A Form of the Metabolic Syndrome Associated with Mutations in DYRK1B

Ali R. Keramati, M.D., Mohsen Fathzadeh, Ph.D., Gwang-Woong Go, Ph.D., Rajvir Singh, Ph.D., Murim Choi, Ph.D., Saeed Faramarzi, M.D., Shrikant Mane, Ph.D., Mohammad Kasaei, M.D., Kazem Sarajzadeh-Fard, M.D., John Hwa, M.D., Ph.D., Kenneth K. Kidd, Ph.D., Mohammad A. Babaei Bigi, M.D., Reza Malekzadeh, M.D., Adallat Hosseiniyan, M.D., Masoud Babaei, M.D., Richard P. Lifton, M.D., Ph.D., and Arya Mani, M.D.

From the Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) — all in Iran. Address reprint requests to Dr. Mani at arya.mani@yale.edu.

Drs. Keramati, Fathzadeh, Go, and Singh contributed equally to this article.

This article was updated on May 15, 2014, at NEJM.org.


Copyright © 2014 Massachusetts Medical Society.

ABSTRACT

BACKGROUND
Genetic analysis has been successful in identifying causative mutations for individual cardiovascular risk factors. Success has been more limited in mapping susceptibility genes for clusters of cardiovascular risk traits, such as those in the metabolic syndrome.

METHODS
We identified three large families with coinheritance of early-onset coronary artery disease, central obesity, hypertension, and diabetes. We used linkage analysis and whole-exome sequencing to identify the disease-causing gene.

RESULTS
A founder mutation was identified in DYRK1B, substituting cysteine for arginine at position 102 in the highly conserved kinase-like domain. The mutation precisely cosegregated with the clinical syndrome in all the affected family members and was absent in unaffected family members and unrelated controls. Functional characterization of the disease gene revealed that nonmutant protein encoded by DYRK1B inhibits the SHH (sonic hedgehog) and Wnt signaling pathways and consequently enhances adipogenesis. Furthermore, DYRK1B promoted the expression of the key gluconeogenic enzyme glucose-6-phosphatase. The R102C allele showed gain-of-function activities by potentiating these effects. A second mutation, substituting proline for histidine 90, was found to cosegregate with a similar clinical syndrome in an ethnically distinct family.

CONCLUSIONS
These findings indicate a role for DYRK1B in adipogenesis and glucose homeostasis and associate its altered function with an inherited form of the metabolic syndrome. (Funded by the National Institutes of Health.)