Abstract

Cytotoxic effects of dacarbazine and all-trans retinoic acid on CD117⁺ cells derived from malignant melanoma

Background & objective: Melanoma is a common form of skin cancer that contain different cell types recognized by various cell surface markers. $CD117^+$ receptors located on the melanocyte that stem cell growth factors attach to it and $CD117^+$ receptor signaling leading to metastasis and proliferation. Dacarbazine is the only chemotherapeutic agent approved by the FDA for treatment of melanoma. Studies showed that $RAR\beta$ expressed in the melanoma cells. $RAR\beta$ mediated signaling is important to inhibit glycolysis. Here, we evaluated cytotoxic effects of ATRA and dacarbazine on $CD117^+$ melanoma cells.

Methods: The A375 melanoma cell line were cultured in DMEM medium and CD117⁺ cells were isolated using magnetic activated cell sorting (MACS). Cytotoxic effects of ATRA (8, 10, 16, 24, 32 and 64 μ M), dacarbazine (800, 1000, 1200, 1400 and 1800 mg/ml) and ATRA/dacarbazine were studied using cell proliferation assay (MTT), acridine orange/ ethidium bromide staining. We performed flow cytometry to evaluate cell cycle arrest (using DAPI staining).

Results: We determined IC_{50} value after treatment with various concentration of ATRA and dacarbazine in CD117⁺ cells. We found that 20 μ M ATRA with dacarbazine caused significantly decrease in IC_{50} value when compared to dacarbazine alone (p<0.05). Our results showed that increasing ATRA concentration in combination group (ATRA/dacarbazine) caused more apoptosis and necrosis. In addition, ATRA/dacarbazine mediated cell cycle arrest at G0/G1 phase and dacarbazine alone inhibited the cells in S phase.

Conclusion: Our results showed that ATRA combination with dacarbazine cause more cytotoxic effects on CD117⁺ cells and it may be used in future to treat melanoma.

Key words: cancer stem cells, A375 melanoma cell line, CD117⁺, all-trans retinoic acid, dacarbazine