
Original Article

Molecular Modeling of Indeno [1, 2-b] Quinoline-9, 11-Diones as 
Cytotoxic Agents

Ramin Miria, Fatemeh Bohloolib, Nima Razzaghi-Aslb,c and Ahmad Ebadid,e*

aMedicinal and Natural Products Chemistry Research Center, Shiraz University of Medical 
Sciences, Shiraz, Iran. bDepartment of Medicinal Chemistry, School of Pharmacy, Ardabil 
University of Medical Sciences, Ardabil, Iran. cDrug and Advanced Sciences Research Center, 
School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran. dDepartment 
of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, 
Hamadan, Iran. eMedicinal Plants and Natural Products Research Center, Hamadan University 
of Medical Sciences, Hamadan, Iran.

Abstract

Deoxyribonucleic acid (DNA) is an important molecular target for anti-cancer agents due 
to its involvement in gene expression and protein synthesis which are fundamental steps in 
cell division and growth. A number of antineoplastic agents interfere with DNA and hence 
disturb the cell cycle. Compounds including planar aromatic rings are privileged scaffolds in 
binding to DNA. This characteristic is mainly arisen from the fact that such structural feature 
may be appropriate to insert between the base pairs of the DNA double helix and produce 
relatively stable non-covalent complexes. Besides π-π stacking interactions, binding to the DNA 
molecule might be intensified through H-bond interactions of heterocyclic rings. In the present 
contribution, a series of experimentally validated cytotoxic indeno[1,2-b]quinoline-9,11-
diones (1-12) and their aromatized analogues (13-21) developed in our group were subjected to 
docking and molecular dynamics simulations to elucidate their most probable binding modes 
with DNA. 
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Introduction

Malignant tumors are responsible for cancer 
(1) and can be broken away and spread out to 
other tissues of the body (2). In spite of recent 
advances in treatment strategies, cancer is still 
one of the major causes of death worldwide (3). 
Many anti-cancer agents interact directly with 
DNA or prevent its processing through interaction 
with a definite enzyme (4, 5). Regarding to this, 
development of DNA targeting anti-cancer 

drugs is one of the considerable interests within 
pharmaceutical scientists.

Generally, ligand-DNA interactions 
can be categorized into two major classes; 
intercalation and groove binding (6). In 
intercalation mechanism, a planar aromatic/
polyaromatic ligand with sufficiently large 
surface area inserts into the space between the 
base pairs of DNA double helix. The driving 
forces for intercalation are primarily π-π stacking 
interactions, H-bonds and ionic interactions 
between ligand and base pairs (7). It has been 
postulated that intercalation reduces the DNA 
helical twist and elongates the DNA, hence 
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disturbing its normal function (8). 
Minor groove-binding agents usually fit to 

the helical turn of the DNA grooves via Van der 
Waals or hydrogen bond interactions (5). This 
structural complementary may be attributed to 
the torsional freedom of interfering ligands that 
provide compatibility with a twisted helical turn 
of the DNA grooves. Such molecular pattern may 
be envisaged as several unfused aromatic rings 
being connected through rotatable bonds (9). 
Major groove-binders have been less reported 
due to the requirement of larger molecular sizes 
in order to be fitted into the DNA. Major groove 
binding pattern have frequently been observed in 
peptides and proteins (10). 

X-ray crystallographic structures of DNA-
ligand complexes (http://www.rcsb.org) 
provided studies on the molecular mechanism 
and structure binding relationship of DNA 
interfering agents. Such structural data facilitated 
the performance of target based hit/lead design 
strategies toward developing new DNA binding 
anti-neoplastic agents. 

In our previous work, a series of new 
imidazole substituted indeno [1,2-b] quinoline-
9,11-dione derivatives were synthesized and 
evaluated for their cell-based cytotoxic effects 
on HeLa, LS180, Jurkat and MCF-7 human 
cancer cell lines using MTT assay (11). Prepared 
compounds exhibited no (IC16 >100 µM) to good 
(IC16 = 0.7 µM in Jurkat cell lines) anti-tumoral 
activities within evaluated cell lines. Due to the 
uncertainty of results in IC50 scale, IC16 values 
were used for our modeling studies. Prepared 
compounds had rigid aromatic/heteroaromatic 
rings constructed around a dihydropyridine 
(DHP) or pyridine core, an appropriate pattern 
for DNA intercalation and H-bonding. In the 
present contribution, docking and molecular 
dynamics methods were applied to elucidate the 
most probable DNA binding mode of cytotoxic 
indeno[1,2-b]quinoline-9,11-dione derivatives.

Experimental

Preparation of oligonucleotide structures 
Crystal structures of two DNA-ligand 

complexes with PDB IDs 1D32 (12) and 102D 
(13) were retrieved from the Protein Data Bank 
as representatives of macromolecular templates 

(14). For preparation of required DNA targets, 
co-crystallographic ligands DIT and TNT were 
respectively removed from the PDB files 1D32 
and 102D and all the crystallographic water 
molecules were also eliminated from each PDB 
file. Missing hydrogens were added, non-polar 
hydrogens were merged to their attached carbon 
atoms and kollman charges were dedicated to the 
oligonucleotide receptors. All the pre-processing 
steps for receptor files were performed via 
AutoDock Tools program (ADT) (15, 16). In 
addition; all the oligonucleotide structures were 
optimized to minimize the crystallographic 
induced clashes via steepest descent method by 
Gromacs package (17).

Preparation of ligand structures
Twenty-one DHP derivatives were 

categorized into indeno [1, 2-b]quinoline-9,11-
diones and their aromatized derivatives. 2D 
chemical structures were rendered by Marvin 
Sketch online chemical editor (18) and relevant 
SMILES strings were used to generate the 3D 
structures by free online 3D conformation 
generator Frog 1.0 software (19). 

Molecular docking
Advanced docking package AutoDock4.2 

was used to dock the screened molecules. For this 
purpose, 3D optimized structures of indeno,1[   
2-b]quinoline-9,11-diones and their aromatized 
derivatives in PDB format were used as input files 
for the AutoDock Tools (ADT) (15, 16). All the 
pre-processing steps for ligand structures were 
performed according to the previous procedure 
(20). Prepared molecules were docked into the 
3D structure of oligonucleotides extracted from 
the crystallographic files (1D32 and 102D). 

Modeling of the DNA-ligand interactions 
were conducted within desired number of 
genetic algorithm runs (50 GA runs) and energy 
evaluations (106 and 5×105 for 1D32 and 102D, 
respectively) on the basis of docking validation 
study. Other AutoDock operating parameters were 
set at their default values. A map was assigned to 
each atom type of the ligand and DNA. Relevant 
maps were estimated using AutoGrid module 
(part of the AutoDock package). A size of the 
grid was set to the 50×50×50 Ǻ3 (distributed in 
the x, y, and z directions) and centered on the 
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macromolecule with a spacing of 0.375 Ǻ to 
include the space occupied by the DNA double 
helix.

LIGPLOT program was used to generate 
the 2D binding interaction maps between DHP 
structures and DNA double helix (21).

Molecular dynamics
All MD simulations were performed using 

GROMACS v.4.6.5 (22) applying Amber99SB 
(23) force field. The compatible topologies of the 
ligands were prepared using the General Amber 
Force Field (GAFF) (24) and ANTECHAMBER 
suite of programs (25, 26), applying the semi-
empirical AM1BCC charges (27, 28). DNA-
ligand complexes were prepared based on 
the best docking pose associated with largest 
binding energy. 

DNA-ligand complex was centered in a 
dodecahedron box filled with TIP3P water (29). 
Enough number of Na+ atoms was added to 
achieve electro-neutrality. A distance of 1 nm 
was set between the box walls and each edge 
of complex. For all of the molecular dynamic 
simulations, the Leonard-Jones and electrostatic 
interactions was computed using a cutoff value 
of 1.2 nm. The leapfrog algorithm (30) using a 
1fs time-step was used as an integrator for the 
equation of motion. All covalent bonds were 
constrained using LINCS algorithm (31).

Actual simulation was set up by minimizing 
the systems to make sure that introduced steric 
clashes during the preparing process were 
removed. During minimization, maximum 
number of 5000 steps was applied using steepest 
descent algorithm. After initial relaxation, 
the system was equilibrated for 200 ps using 
the NVT and NPT ensemble respectively. In 
NVT ensemble (constant number, volume, 
and temperature) temperature was set at 300 K 
using a velocity-rescale thermostat (modified 
Berendsen thermostat) (32) with a coupling 
constant of 0.1 ps. After temperature stabled 
at 300 K, NPT ensemble (constant number, 
pressure, and temperature) was performed with 
an isotropic pressure of 1 bar and a coupling 
constant of 2 ps by using a Parrinello-Rahman 
barostat (33). 

Position restraints were applied to the ligands 
and DNA during the NVT and NPT ensemble. 

Long range electrostatic interactions were 
computed utilizing the particle mesh Ewald 
method (34). Equilibration was followed by a 
50 ns production run using the NPT ensemble 
with the velocity-rescale thermostat (32) and the 
Parrinello–Rahman barostat (33). Evaluation of 
MD simulations was performed by extracting 
data from the trajectory files produced during 
the simulations.

Results and Discussion

Internal validation
The internal validation step was 

performed via extracting the structures of co-
crystallized ligands ditercalinium (DIT) and 
propamidine (TNT) and re-docking them 
into the original crystallographic files of 
the d(CGCAAATTTGCG)2 and d  (CGCG)2 
oligonucleotides. Validation of the AutoDock 
method for each crystallographic structure 
was interpreted in terms of root mean square 
deviation (RMSD) of the Cartesian coordinates 
of the atoms of the ligand in the docked and 
crystallographic poses (RMSD < 2Ǻ). It should 
be noted that top-ranked AutoDock clusters 
in the output files were supported by high 
conformational population. Obtained results 
indicated that the parameters set for AutoDock 
were reliable for reproducing X-ray complex 
structures.

For more elucidation, lowest energy poses of 
cognate drugs (propamidine and ditercalinium) 
in docked and crystallographic states are shown 
in Figure 1.

Binding model selection
AutoDock is a widely used docking package 

in computational medicinal chemistry and it is 
believed to offer relatively logical outcomes 
within several calculations (35). To further 
elucidate the interactions of DNA with indeno 
[1,2-b]quinoline-9,11-diones (1–21), we 
used AutoDock4.2 software to dock all the 
relevant structures into the d  (CGCG)2 and d 
(CGCAAATTTGCG)2 oligonucleotides of DNA 
double helix. 

Structure elucidation of the evaluated indeno 
[1, 2-b]quinoline-9,11-diones showed that these 
compounds possessed aromatic/heteroaromatic 
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rings constructed around a DHP/pyridine core. 
In our opinion, such molecular pattern might 
be appropriate for intercalation and H-bond 
interactions with DNA double helix. To 
explain more, possible structure DNA binding 
relationship of indeno [1, 2-b] quinoline-9,11-
diones is depicted below (Scheme 1). Observed 
binding potentialities persuaded us toward 

performing modeling studies with the aim of 
proposing novel DNA interfering agents.

Chemical structures of screened ligands are 
summarized in Figure 2. All of the molecules 
could be interpreted as drug-like chemical entities 
and for this reason they might be good candidates 
for further drug development strategies (36). 
In addition, selected DHP structures possessed 
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Figure 1. Lowest energy (bioactive conformation) poses of a) propamidine-DNA (1D32) and b) ditercalinium-DNA 

(102D) in docked (yellow stick) and crystallographic (green stick) complexes (DNA structure rendered in blue and 

pink as solvent-excluded surface) (RMSD for 1D32: 1.10 Å and RMSD for 102D: 1.05 Å) 
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Figure 1. Lowest energy (bioactive conformation) poses of a) propamidine-DNA (1D32) and b) ditercalinium-DNA (102D) in docked 
(yellow stick) and crystallographic (green stick) complexes (DNA structure rendered in blue and pink as solvent-excluded surface) 
(RMSD for 1D32: 1.10 Å and RMSD for 102D: 1.05 Å).
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Scheme 1. Possible relationship between chemical structure and DNA binding ability of evaluated indeno [1, 2-b] 

quinoline-9, 11-diones, as can be predicted from the model, both hydrophobic and hydrogen interactions might be 

expected on the basis of represented scaffold template. 

 

Chemical structures of screened ligands are summarized in Figure 2. All of the molecules could be interpreted as 

drug-like chemical entities and for this reason they might be good candidates for further drug development strategies 

(36). In addition, selected DHP structures possessed low number of active torsions (rotatable bonds) which proposed 

them as suitable candidates for docking simulation due to lower free torsional energies. 

 

Scheme 1. Possible relationship between chemical structure and DNA binding ability of evaluated indeno [1, 2-b] quinoline-9, 11-diones, 
as can be predicted from the model, both hydrophobic and hydrogen interactions might be expected on the basis of represented scaffold 
template.
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low number of active torsions (rotatable bonds) 
which proposed them as suitable candidates for 
docking simulation due to lower free torsional 
energies.

For more clarification, in-vitro 
cytotoxicity effects of indeno [1, 2-b] 
quinoline-9,11-diones on different cell lines 
could be reviewed elsewhere (11). 

Binding affinity prediction
Predicted docked energies can be reported 

in terms of final docked energy (FDE) which 
is the sum of final intermolecular energy and 
final internal energy of ligand or estimated free 
energy change of binding (ΔG) that is the sum 
of final intermolecular energy and torsional free 
energy penalty (37). 

Docking results indicated that indeno [1, 
2-b]quinoline-9,11-diones could be reversibly 
attached to DNA oligonucleotides with varied 
binding affinities ranging from -6.86 to -9.20 
kcal.mol-1 and -5.85 to -9.87 kcal.mol-1 in 
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Figure 2. Chemical Structures of indeno [1, 2-b] quinoline-9,11-diones under study. 
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1D32 and 102D macromolecular templates, 
respectively. For more clarification, 
AutoDock binding affinities together with 
probability factors in terms of number of 
clusters and top-ranked cluster population 
in AutoDock output files are summarized in 
Table 1.

Comparative analysis of experimental 
cytotoxicity values and calculated binding 
affinities might be interpreted via following 
rationales:

(1) Nearly all aromatized indeno [1, 
2-b] quinoline-9,11-diones were associated 
with higher binding energies when compared 
to their non-aromatized analogues (Figure 
3). One of the possible explanations for such 
observation might be attributed to the superior 
π-π stacking interactions with oligonucleotides 
of DNA double helix in aromatized compounds. 
Such observation could not be confirmed by 
experimental cytotoxic activities in Jurkat cell 
lines (Such rationalization may not be offered 
for other cell lines due to the uncertainty of 
cytotoxic data). This trend might be explained by 
this point that the cytotoxic effect of aromatized 
scaffolds in Jurkat cell lines is not related to the 
DNA intercalation.

(2) Experimental cytotoxic data showed 
that N-phenyl substituted compounds had 
increased effects in the majority of cases 
(Compounds 4, 5, 11 & 12). It was also recognized 
that FDE values (1D32) could better anticipate 
DNA-ligand interactions in such molecules (4: 
-9.25, 5: -9.40, 11: -9.35 & 12: -9.95 kcal/mol).

(3) FDE values over -10 kcal/mol were 
contributed to compounds 3, 9, 14, 16 & 20 in 
102D model. Experimental results showed that 
except for compound 14 which was inactive in 
HeLa, LS180 and MCF7 cell lines, the other four 
compounds showed good anti-tumoral effects 
within tested cells. In relation to this, modeling 
studies confirmed that the incorporation of 
electron-withdrawing substituents such as 
chlorine atoms to the imidazole moiety of 
indeno [1, 2-b] quinoline-9, 11-dions might be 
associated with higher cytotoxic effects.

(4) Linear regression analysis of calculated 
binding affinities and experimental cytotoxicity 
values showed that maximum correlation could 
be achieved in the case of HeLa cells (r0.74 = ; 
r20.56 =  for experimental IC16 versus predicted 
Ki values in 102D system) (Figure 4). No 
correlation could be found between predicted 
DNA affinities and cytotoxic activities in Jurkat 
cell lines.

Ligand-DNA binding interactions
With the aim of further elucidating ligand-

DNA binding interactions, LIGPLOT program 
was used to generate the binding interactions 
between DHPs and DNA. Selective hydrophobic 
interactions were depicted using the hydrophobic 
bond module of Ligplot (Supplementary 
material 1).

To be informative, binding interactions along 
with binding participants of various complexes 
of indeno [1, 2-b] quinoline-9,11-dions with 
DNA are summarized in the supplementary 

Figure 3. Comparison of the DNA binding affinities for non-aromatized (1,2,3,6,7,8,9 & 10) and aromatized (13,15,16,17,18,19,20 & 
21) indeno [1,2-b] quinoline-9,11-diones (PDB deposition codes: 1D32 & 102D); as can be understood from the diagram, aromatized 
indeno [1, 2-b] quinoline-9,11-diones were associated with higher binding energies when compared to their non-aromatized analogues
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Table 1. AutoDock results for the complex of indeno[1,2-b]quinoline-9,11-diones and DNA target.

No. of 
conformations 
in top-ranked 
cluster (out of 50)

No. of 
clusters

Inhibition 
constant (Ki)

(µM)

Final Dockedenergy 
(kcal.mol-1)

Estimated free 
binding energy 

(kcal.mol-1)
PDB code Comp. code

41 4 5.58 -8.30 -7.17 1D32 1

30 3 4.60 -7.99 -7.28 1D32 2

29 3 4.68 -8.27 -7.27 1D32 3

46 3 2.36 -9.25 -7.68 1D32 4

24 4 4.86 -9.40 -7.25 1D32 5

45 4 5.85 -8.38 -7.14 1D32 6

32 4 3.98 -8.15 -7.37 1D32 7

38 3 5.64 -7.93 -7.16 1D32 8

44 2 2.13 -8.64 -7.74 1D32 9

43 4 4.28 -8.53 -7.32 1D32 10

49 2 2.16 -9.35 -7.73 1D32 11

50 1 1.08 -9.95 -8.14 1D32 12

50 1 2.53 -8.93 -7.63 1D32 13

27 3 0.764 -9.00 -8.34 1D32 14

45 2 2.02 -8.58 -7.77 1D32 15

2 8 0.179 -9.71 -9.20 1D32 16

37 5 9.34 -7.88 -6.86 1D32 17

21 5 0.624 -9.08 -8.45 1D32 18

34 4 4.39 -8.02 -7.31 1D32 19

4 6 0.270 -9.16 -9.12 1D32 20

29 5 5.47 -8.24 -7.18 1D32 21

48 2 6.65 -8.19 -7.06 102D 1

38 5 1.07 -8.76 -8.15 102D 2

34 2 0.134 -10.06 -9.38 102D 3

17 10 1.12 -9.18 -8.12 102D 4

14 6 4.80 -9.39 -7.26 102D 5

20 3 9.01 -8.13 -6.88 102D 6

31 4 0.480 -9.27 -8.62 102D 7

26 3 1.28 -8.82 -8.04 102D 8

36 4 0.328 -10.58 -8.85 102D 9

28 3 0.791 -9.44 -8.32 102D 10

24 5 1.64 -9.13 -7.89 102D 11

26 3 0.975 -9.42 -8.20 102D 12

48 2 1.73 -9.44 -7.86 102D 13

50 1 0.076 -10.32 -9.71 102D 14

26 2 0.304 -9.61 -8.89 102D 15

44 3 0.077 -10.44 -9.70 102D 16

21 7 3.94 -8.64 -7.37 102D 17

29 4 0.058 -10.5 -9.87 102D 18

35 3 0.340 -9.68 -8.82 102D 19

20 9 0.108 -10.18 -9.50 102D 20

18 7 0.844 -9.59 -8.29 102D 21
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material 2. Analysis of the DNA-ligand binding 
interactions revealed that:

1) Various PDB deposited templates of DNA 
cold have a considerable effect on binding mode 
of indeno [1 ,2-b]quinoline-9,11-diones. Such 
observation might emphasize on the effect of 
initial macromolecular template on molecular 
modeling results.

2) Model 102D provided more hydrophobic 
participants when compared to 1D32. This might 
be expected since the residual constituents of 
102D template included additional adenine and 
thymine bases with thymine being the most 
hydrophobic interacted residue.

3) All the compounds exhibited hydrophobic 
contacts with a number of DNA nucleobases in 
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model 102D but there were some exceptions in 
model 1D32. To explain more, compounds 2, 
5, 8, 10, 14 & 18 contributed to hydrophobic 
contact with DG, DC, DG, DG, DG & DG 
nucleobases, respectively. Such priority of 
guanine over cytosine in hydrophobic binding 
might be demonstrated through additional 
aromatic ring of guanine and hence providing 
weak interactions with DHP molecules.

4) Thymine was the only residue participating 
in key H-bonds with indeno [1, 2-b]quinoline-
9,11-diones in model 102D. Our binding maps 
showed that this priority could be best explained 
by additional oxygen acceptors and also NH 
donors of thymine.

5) In compounds such as 1, nitroimidazole 
substituent provided additional hydrogen 
interactions with H-bond donor atoms of DNA 
bases (supplementary material 3). 

6) In non-aromatized structures, molecular 
alignment of compounds 2, 8 and 10 associated 
with key H-bonds to carbonyl oxygen of DG2 
nucleobase (1D32). 

7) Unlike the model 1D32, in model 102D 
all the non-aromatized compounds participated 
in key H-bond interactions via DHP NH site. 
Compounds 6-10 made H-bonds with sugar ring 
oxygen of nucleotide while binding template for 
compounds 1-3 was through thymine carbonyl 
oxygen. 

8) N-phenyl substituted compounds (4, 5, 11 
and 12) contributed to additional hydrophobic 
interactions with DC7 and DG8 nucleobases of 
DNA (1D32). Such hydrophobic contacts were 
observed within DA18, DT8, DT9 and DT19 
residues in model 102D.

Molecular dynamic simulations
Dynamic stabilities of two indeno [1, 2-b] 

quinoline-9,11-dione/DNA complexes were 
evaluated using MD simulations. Considering 
probable binding mechanisms, i.e. intercalation 
(1D32) and minor groove binding (102D), the 
ligand with highest binding energy was selected 
for further simulations in each case. 

Due to the planar structure of Compound 16, 
it was expected that this compound could bind to 
the DNA structure through intercalating between 
DG and DC nucleobases. Moreover; presence 
of two methyl groups at position 7 of quinoline 

moiety opposed steric hindrance on compound 
18 and made its interaction more favorable 
within DNA minor groove when compared to 
the intercalation between DNA nucleobases. 

After solvation of the DNA-ligand systems 
in a dodecahedron box with TIP3P water and 
adding enough number of Na+ ions to achieve 
electro-neutrality, 5000 minimization steps was 
performed using the steepest descent method. 
Soaking of DNA-ligand system was carried out 
by 100 ps constrained NVT followed by 100 ps 
NPT ensembles. Following system equilibration, 
50 ns MD production was performed in each 
case without any constraint.

Total energy, temperature and root mean 
square deviation (RMSD) were assessed to 
confirm the stability of trajectories. The average 
temperature during MD simulations at 300 K 
was found to be 299.0 K (± 3.6) and 298.2 K 
(± 2.3) in the case of models 1D32 and 102D, 
respectively. The temperatures of the both 
systems were stable for the whole simulation 
time. Fluctuation of temperature and energy is 
depicted in Figure 5. Obtained results showed 
that the conservation of energy over 50 ns MD 
simulations was convinced in both systems.

The stability of the MD simulation was 
determined in terms of departures and fluctuations 
from the initial ligand-DNA structure. The time 
evolution of the ligand (all atoms) RMSDs was 
recorded as a function of time. The RMSD of 
two ligands with regard to initial conformations 
was illustrated in Figure 6.

As can be seen in Figure 7, both ligands had 
overall stability in binding state. Compound 16 
bound to DNA through intercalation between 
DC and DG nucleobases. After 5 ns fluctuations, 
compound 16 converged to a stable binding 
conformation and leveled off the rest of MD 
simulations time. This demonstrated that after 5 
ns simulation and initial fluctuations in the all 
atom scale of ligand RMSD, the ligand acquired 
an equilibrium state characterized by the RMSD 
outline. At first glance, the complex between 
compound 18 and DNA minor groove seemed 
to be unstable. But a closer look at RMSD 
fluctuations revealed that the changes in RMSD 
were very small by the mean 0.066 ± 0.008 nm.

More informative illustration of the system 
stability could be achieved by computing the 
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center of mass (COM) distance between ligand 
and DNA. To get the DNA-ligand interactions, 
we calculated the COM distance between ligand 
and DNA during the simulation time. The results 
are depicted in Figure 7.

Compound 16 showed dramatic changes in 
COM distance during simulation time. COM 
distance between the intercalated ligand (16) and 

DNA nucleobases was stable at mean distance 
0.60 ± 0.05 till 4.54 ns when the first increase 
occurred. As can be seen in Figure 8, the new 
state seemed to be unstable and rapidly returned 
to the mean value. This trend repeated over the 
whole simulation time. To discover the system 
condition in these situations, complex structure 
between compound 16 and DNA was extracted 
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Figure 5. The time evolution of temperature and energy during 50 ns of MD simulations A: Complex of 16 and DNA (PDB code: 1D32), 
B: Complex of 18 and DNA (PDB code: 102D); data represents that conservation of energy over 50 ns MD simulations is convinced in 
both systems.

Figure 6. RMSD fluctuations of compound 16 (A) and 18 (B) in their complex with DNA over 50 ns MD simulations; data represented 
that both ligands were overally stable in their binding mode.
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from trajectories for each 5 ns (Figure 8). 
We postulated that compound 16 was 

probably capable of separating DNA strands 
from each other. The rise in COM distance might 
be related to the departure of DNA strands from 

initial position. This movement increased the 
COM distance between compound 16 and DNA 
with regard to their initial conformation (Figure 
8A). The separation of DNA strands took place 
at the end of strand and we could not predict the 
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Figure 7. Center of mass (COM) distance between compound 16 (A), compound 18 (B) and DNA, data indicated 

that compound 16 showed dramatic changes in its COM distance during simulation time. 
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Figure 7. Center of mass (COM) distance between compound 16 (A), compound 18 (B) and DNA, data indicated that compound 16 
showed dramatic changes in its COM distance during simulation time.
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Figure 8. 5ns snapshot representations of the complex between compound 16 and DNA (PDB deposited code: 

1D32); as can be seen, the rise in COM distance might be related to the departure of DNA strands from initial 

position. 
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DNA strands took place at the end of strand and we could not predict the situation in which the compound intercalated 

in the middle of DNA strands. 

In the case of compound 18, three increases followed by relevant decreases in COM distance could be detected. The 

fluctuations occurred between 15 and 22 ns, 27 and 35 ns and finally at 47 ns and continued to the end of simulation. 

Double helix structure was stable during simulation so this time the movement of ligand could be responsible for 

observed changes. Compound 18 moved along the minor groove. In this case an interesting fact was the returning of 

ligand into its initial position. Analyzing the binding energy between compound 18 and DNA revealed that initial 

complex had maximum binding energy (Figure 9B).  

 

Figure 8. 5ns snapshot representations of the complex between compound 16 and DNA (PDB deposited code: 1D32); as can be seen, the 
rise in COM distance might be related to the departure of DNA strands from initial position.
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situation in which the compound intercalated in 
the middle of DNA strands.

In the case of compound 18, three increases 
followed by relevant decreases in COM distance 
could be detected. The fluctuations occurred 
between 15 and 22 ns, 27 and 35 ns and finally 
at 47 ns and continued to the end of simulation. 
Double helix structure was stable during 
simulation so this time the movement of ligand 
could be responsible for observed changes. 
Compound 18 moved along the minor groove. 
In this case an interesting fact was the returning 
of ligand into its initial position. Analyzing the 
binding energy between compound 18 and DNA 
revealed that initial complex had maximum 
binding energy (Figure 9B).

VDW interaction energy as a main 

contributor to total energy decreased due to the 
movement of ligand from its initial position. 
This result demonstrated that compound 18 
preferred binding to DT reach domain. For more 
clarification, the contribution of each nucleobase 
in total binding energy is illustrated in Figure 10. 
As it was expected, compound 18 attached to 
the minor groove of DNA mainly through VDW 
interactions. Moreover; compound 18 could 
favorably bind to DT rich domain through free 
movement in the minor groove.

Conclusion

The principal objective of the present study 
was to propose a binding model for cytotoxic 
indeno [1, 2-b] quinoline-9,11-diones as DNA 
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Figure 9. Electrostatic and Van der Waals interactions between compound 16 (A) compound 18 (B) and DNA. 
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VDW interactions while compound 18 could favorably bind to DT rich domain through free movement in the minor 
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interfering agents. Docking results indicated 
that these compounds could reversibly attach to 
DNA oligonucleotides with varied free binding 
energies ranging from about -6 to nearly 10 
kcal.mol-1. Docking studies confirmed that 
the incorporation of electron-withdrawing 
substituents such as chlorine atoms to the 
imidazole moiety of indeno[1,2-b]quinoline-
9,11-dions might be associated with higher 
cytotoxic effects MD simulation studies 
confirmed the stability of docked complexes 
and showed that probable binding mode of 
indeno [1, 2-b] quinoline-9,11-diones within 
DNA double helix could be intercalation 
between DC3, DC5, DG4 and DG6 nucleobases 
and indene, imidazole, indene and quinoline 
moieties of the ligands, respectively (PDB ID: 
1D32). Linear regression analysis showed that 
cytotoxic effects of aromatized scaffolds in 
Jurkat cell lines may not be related to the DNA 
intercalation. MD simulations also demonstrated 
that compounds bearing two methyl substituents 
at their quinoline ring could attach to the minor 
groove of DNA by VDW interactions with DT 
rich domain through free movement in the minor 
groove. N-phenyl substituted indeno [1, 2-b]
quinoline-9,11-dions contributed to additional 
hydrophobic interactions with DC7 and DG8 
(PDB ID: 1D32) and DA18, DT8, DT9 and 
DT19 (102D) nucleobases of DNA. The applied 
method can be extended to other biological 
systems involving DNA-ligand interactions.
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