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Abstract

Background: Many studies indicate that theBacillus Calmette-Guérin (BCG) vaccine has low protective efficacy, especially in endemic
areas. There are several factors in this assessment, such as genetic diversity of BCG strains, pre-exposure to environmental mycobac-
teria, and variations in host immune responses. Currently, more than 200 new vaccine candidates have been proposed, such as
recombinant BCG, DNA, and subunit vaccines. However, none of them are superior to BCG. Nevertheless, several approaches are
considered to reduce the cases of TB infection.
Objectives: The aim of the present study was to evaluate the capability of the Ag85a-cfp10 fusion protein as a new chimeric protein
in stimulating immune responses.
Methods: A DNA vaccine encoding Ag85a-cfp10 fusion protein was constructed in the previous study. The expression of Ag85a-cfp10
fusion protein in host cells was confirmed by the RT-PCR method. Six pathogen-free female mice were injected intramuscularly at a
total concentration of 100µg/mL three times at two-week intervals. The BCG and the control groups received BCG and PBS vaccines,
respectively. One month after the final immunization, mice were killed and their splenocytes were cultured in RPMI medium sup-
plemented with 1% antibiotics and 10% serum. Four cytokines including IL-4, IL-12, TGF-β, and IFN-γ were measured in the culture
supernatant using the ELISA test.
Results: RT-PCR analysis showed that Ag85a-cfp10 recombinant vector is able to replicate in eukaryotic cells and produce mRNA.
The vaccinated groups were compared to the control group, showing induction of high levels of cytokine production.
Conclusions: Some reports depicted that DNA vaccines are able to induce humoral and cellular immune responses both in ani-
mal models and humans. Therefore, in the current study, the immune response was induced in mice, which were inoculated with
recombinant expression plasmid, pcDNA3.1 (+)-Ag85a-cfp10. We showed that this recombinant vector can stimulate mycobacterial
specific modulating cytokines. Nonetheless, analysis appeared that this vaccine is unable to stimulate cell mediated immunity,
however, still further studies are needed in future.
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1. Background

Tuberculosis (TB) is a contagious disease that is associ-
ated with severe complications along with about two mil-
lion deaths per year (1, 2). Tuberculosis and human im-
munodeficiency virus (HIV) co-infection together with the
high prevalence of drug-resistant Mycobacterium tubercu-
losis strains furthers complicate the status of the disease
(3). Bacillus Calmette-Guérin (BCG) is an attenuated strain
of M. bovis that is acquired by repeated passages of M. bovis
on potato-glycerol-bile medium for 13 years in 1921 (4). Af-

ter that year, culture of BCG in different culture conditions
and in different parts of the world resulted in the produc-
tion of several BCG sub-strains with genetic variations and
protective characteristics (5, 6). This vaccine can confer
protection against severe disseminated form of childhood
TB. However, the major challenge regarding BCG is that it
remains to be the only resolution for pulmonary TB. De-
spite many advantages of BCG, this vaccine cannot protect
the lungs against mycobacterial invasion (7). M. tuberculo-
sis is an intracellular pathogen. Cell-mediate immunity, es-
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pecially by CD4+ T cells plays a key role in the management
of the disease (8, 9). It should be noted that BCG could not
be used in immunocompromised patients such as HIV in-
fected patients as they are at high risks for disseminated
diseases. Therefore, more effective vaccine, drugs, and di-
agnostic methods need to be developed to manage this se-
rious disease. Extensive studies have been conducted for
this purpose during the past 20 years (3, 10, 11).

Antigen 85a (Ag85a) is a fibronectin-binding protein
A (FbpA) that belongs to a complex protein as secretory
products of M. tuberculosis. This protein participates in
biogenesis of the mycobacterial cell wall (12-14). Ag85a is
also involved in several activities such as facilitating the
uptake of M. tuberculosis by macrophages, synthesis of tre-
halose dimycolate (TDM), and maintenance of the cell wall
integrity. Experimental studies have shown that Ag85a
is a good antigen to induce strong protective immunity
against TB and can be used as a subunit vaccine. Indeed, the
capability of Ag85a, in the induction of strong T-cell activa-
tion and interferon-γ (IFN-γ) production, has been proven
(15, 16).

Cfp-10 is a 10 kDa culture filtrate protein known as early
secreted antigenic target protein 6 (ESAT-6) like protein.
Cfp-10 is expressed from the region of deletion 1(RD1) re-
gion of the mycobacterial genome and has an important
role in the pathogenicity of M. tuberculosis (17). Cfp-10 is se-
creted by the ESX-1 secretion system, which is important
for the delivery of the virulence factor Cfp-10 into host cells
such as macrophages. Although the specific function of
Cfp-10 has remained unclear, every disorder in synthesis or
secretion of this protein leads to virulence attenuation of
M. tuberculosis and its inability to replicate in macrophages
(18, 19). Similar to Ag85a, this antigen is able to promote
specific mycobacterial immune responses.

At present, heterologous prime-boost immunization is
mostly considered as an effective way for enhancing cell
mediated responses in BCG-primed individuals. In this
regard, over 9 new vaccines have undergone clinical tri-
als including Ad5Ag85A, Crucell Ad35/ AERAS-402, and M72
+ AS01. Among different TB specific-antigens only a few
of them are commonly employed for the development of
these vaccines such as Ag85a, Tb10.4, and EsxH. Judgment
regarding which vaccines or antigens are better requires
completion of clinical trials (20).

2. Objectives

In the present study, a DNA vector harboring Ag85a and
Cfp-10 genes constructed previously, s was examined in an
animal model to evaluate the ability of the new chimeric
protein in stimulating immune responses (21).

3. Methods

3.1. Ethics Statement

All mice were kept in accordance with the guidelines of
the Institutional Animal Care and Use Committee (IACUC)
(IR.MUMS.REC.1393.160 ethics code) (22).

3.2. Animals

Specific-pathogen-free female BALB/c mice were pur-
chased from the Northeast branch of Razi Vaccine and
Serum Research Institute. All mice were four to six weeks
old in the beginning of the immunization.

3.3. Construction of Recombinant Plasmid

In the previous study, Ag85a and Cfp10 genes were iso-
lated from M. tuberculosis H37Rv genome using specific
primers and PCR and was further cloned into pCDNA3.1 (+)
as an eukaryotic expression vector. Constructed vector, as
shown in Figure 1, was sequenced and showed 100% iden-
tity with the recorded genes in GenBank (21).

3.4. RT-PCR

The capability of the constructed vector in the pro-
duction of Ag85a - Cfp10 fusion mRNA in eukaryotic cells
was evaluated by RT-PCR. For this purpose, recombinant
Ag85a - Cfp10 -pCDNA3.1+ vector was transfected into Huh-
7 (hepatocellular carcinoma) cell line using lipofectamine
in accordance with the manufacturer’s instructions (In-
vitrogen, USA). After the incubation period, transfected
cells were recovered and the total RNA extraction was per-
formed using RNX-Plus (SinaClon, Iran), according to the
manufacturer’s instructions. The extracted RNA was then
applied for cDNA synthesis using the cDNA synthesis kit

Figure 1. A schematic illustration of recombinant vector
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(Pars Tous, Iran). This was followed by the amplification of
cfp-10 using specific primers.

3.5. DNA Vaccination of Mice

An eukaryotic plasmid containing a full length of
Ag85a and Cfp10 gene was developed in the previous study
(23). To propagate this plasmid, Escherichia coli strain JM109
was transformed with the recombinant plasmid and was
purified by the Qiagen kit, based on the manufacturer’s in-
structions (24). Eighteen female BALB/c mice, at the age
of six to eight weeks (25 g) were divided into three groups
(n = 6/group): vaccine, BCG, and control groups. The vac-
cinated group was immunized intramuscularly in both
quadriceps with 100 µg purified endotoxin-free recombi-
nant DNA vaccine three times with two week intervals.
The control group received sterile saline and the positive
group was injected subcutaneously with 5 × 105 cfu of M.
bovis BCG vaccine on the first day of immunization. One
month after the last immunization, all mice were sacri-
ficed and their splenoctyes were harvested and cultured
as described in the previous study (25). Their lymphocytes
were harvested from spleen and cultured in enriched RPMI
in the presence of 5% CO2 at 37°C (25).

3.6. Immunogenicity

To evaluate the immune responses in mice, cytokines
(IL-4, IL-12, IFN-γ, and TGF-β) were measured by ELISA (ebio-
science, USA). Thirty days after the last immunization, all
mice were sacrificed and their spleen was removed imme-
diately. Then, fresh splenocytes were harvested and cul-
tured in the presence of mycobacterial crude antigens that
was obtained from M. tuberculosis lysate in RPMI medium
(26). After 72 hours of incubation, the supernatant was col-
lected and the levels of cytokines were measured by ELISA,
according to the manufacturer’s protocols (eBioscience,
SanDiego, CA).

3.7. Statistical Analysis

Normality of data was analyzed by Kolmogorov-
Smirnov test, and one-way ANOVA-tests were used to
compare means among groups. A P value of P < 0.05 was
considered significant. Analysis was performed with SPSS
version 12 (IBM Corporation, New York, USA).

4. Results

The ability of Ag85a - Cfp10 -pCDNA3.1+ vector in the
generation of mRNA was confirmed in the cell culture sys-
tem using RT-PCR method with amplification of 303bp of
cfp-10 gene (Figures 1 and 2) (23). Lymphoproliferation, in
response to the antigen, was observed in vaccine and BCG

groups while spleen cells from the control group did not
proliferate upon stimulation with the antigen. The cul-
ture supernatant of splenocytes was collected 72 hours af-
ter treatment with antigen. Table 1 shows the level of cy-
tokines, which was assessed by ELISA (eBioscience, USA).
The differences between vaccinated and BCG groups were
significant in terms of the production of four cytokines
(P < 0.001) (Figure 3 and Table 1). The average level of
cytokines was measured in the culture supernatant of
splenocytes by ELISA.

Regarding IL-12, differences among BCG (26.90 ± 1.28)
and vaccine (26.60± 1.42) groups, compared with the con-
trol group (18.48 ± 1.68) were significant (P < 0.001). How-
ever, there was no statistically significant difference be-
tween BCG and vaccinated groups. There were statistically
significant differences in the levels of IL-4, among control

Table 1. Measurements of Different Cytokine Levels in BCG, Vaccine and Control
Groupsa

Cytokine, pg/mL PBS BCG Vaccine

IFN-γ 96.28 ± 9.22 303 ± 24.32 788 ± 24.85

IL-12 18.48 ± 1.68 26.90 ± 1.28 26.60 ± 1.42

IL-4 9.48 ± 1.24 27.6 ± 2.69 435 ± 6.66

TGF-β 15.65 ± 1.05 14.81 ± 1.17 45 ± 3.75

aValues are expressed as mean ± SD.

Figure 2. RT-PCR results of transfected and un-transfected Huh cells. Lane 1: Trans-
fected cells and amplification of Cfp-10 gene; lane 2: non-transfected cells as a nega-
tive control, and lane M: 1kb DNA size marker.
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Figure 3. Cytokine production levels were measured by ELISA method according to the manufacturer’s instructions and results are presented as the mean ± SD (P < 0.05 (*),
P < 0.01 (**), and P < 0.001 (***)).

(9.48 ± 1.24), and BCG (27.6 ± 2.69) compared to the vacci-
nated (435 ± 6.66) group (P < 0.001). The levels of IFN-γ in
the vaccinated (788±24.85) group was significantly higher
compared to that of the BCG (303 ± 24.32) group and the
control group (96.28 ± 9.22) (P < 0.001). However, the dif-
ference between that of BCG group and the control group
was not significant (P < 0.01). With regards to the level of
TGF-β, there was no significant difference between the BCG
group (14.81± 1.17) and the control group (15.65± 1.05) (P >
0.05). However, the difference between the vaccine group
(45 ± 3.75) and the BCG group and the control group was
significant (P < 0.001).

5. Discussion

Mycobacterium tuberculosis is an intracellular
pathogen. Despite many efforts, it still remains the
leading cause of death worldwide. Effective immune
responses against intracellular pathogens such as M.
tuberculosis, induce cellular immunity. To induce cellular
immunity of certain cytokines, and also specific Th1 CD4+
and CD8+, cytotoxic T lymphocyte (CTL) have essential
roles. In the TB infection, activation of macrophages is
crucial since this pathogen is able to remain inside the
macrophages without any replication, a condition that
leads to latent status. Followed by any suppression in
the immune system, latent infection progresses to active
disease in people who have an asymptomatic or latent
infection. Alveolar macrophages are the primary cells
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targeted by M. tuberculosis. In infected cells, fusion of the
phagosome with lysosome and production of reactive
nitrogen intermediates (RNIs) is blocked. This allows
bacteria to resist at the intracellular environment (27-30).

Previous studies have shown that several cytokines,
such as IL-12, interferon-γ (IFN-γ), and TNF-α contribute
to the activation of macrophages, enhancing the develop-
ment of Th1 cells and, finally elimination of the infection.
These cytokines induce antimycobacterial activity through
the activation of macrophages, formation of granuloma,
increase in antigen presentation, and production of effec-
tor molecules. The granuloma is a typical feature of TB
and is a strategy used by the host immune system to re-
strain the spread of infection. Among different immune
cells, IFN-γ-producing CD4+ T lymphocytes have central
roles since they directly contribute to the generation of
granuloma, activation of cytolytic CD8+ lymphocytes, and
macrophage. In the present study, the cytokine profile was
assessed in mice that received recombinant DNA vaccine
and BCG vaccine. IFN-γ is mainly produced by activated
CD4+ and CD8+ T cells and NK cells. IFN-γ is an essential cy-
tokine in stimulating protective immune response against
intracellular pathogen like mycobacterial infection.

In response to IFN-γ mediated activation of
macrophages, presentation of antigens, differentiation of
naïve T cell to Th1 subpopulations, generation of antigen
specific- CTL, and production of free oxygen radicals and
nitric oxide in macrophage (as the effector way for elim-
ination of M. tuberculosis) is dramatically increased. Any
mutation and disruption in the IFN-γ related gene and its
receptor is associated with increased susceptibility to M.
tuberculosis infection, increased severity of the infection,
the absence of granuloma formation, and dissemination
of tuberculosis infection (31-33). Interleukin-12 (IL-12) is
another important cytokine that has a direct effect on
IFN-γ production by T cells and NK cells. IL-12, along with
IFN-γ, have a central role in activation of macrophages,
generation of antigen-specific Th1 cells, development of
protective and specific immune responses against TB, and
ultimately eradication of TB infection. Based on previous
studies, despite the protective role of IFN-γ, IL-4, as a Th2
biomarker, has a contradictory effect on TB infection (34,
35). In a study, Buccheri et al. confirmed that IL-4 depletion
can increase host resistance to -TB infection. This study
indicated that treatment of infected mice, with anti-IL-
4/IFN-γ, increased formation of granuloma, production
of pro-inflammatory cytokines, and decrease in bacterial
counts (36-38).

TGF-β and IL-10 are inhibitory cytokines that prevent
the activation of T lymphocytes through inhibiting the
production of pro-inflammatory mediators including IFN-
γ, TNF-α, and IL-12 and reduction of presenting anti-

gens from antigen-presenting cells (APC) s through down-
regulation of MHC class II molecules. Therefore, the in-
crease in TGF-β and IL-10 levels are related to mycobacte-
rial survival within host, debilitation of cell-mediated im-
munity, and finally increased severity of disease. There is a
substantial body of evidence suggesting that M. tuberculo-
sis suppress effectual immune responses by inducing the
production of IL-10 and TGF-β (39-41).

Ag85a is involved in several activities such as facilita-
tion of the uptake of M. tuberculosis by macrophage, syn-
thesis of trehalose dimycolate (TDM), and finally mainte-
nance of cell wall integrity. Horwitz et al. showed that im-
munization of naive hosts with purified extracellular pro-
teins of intracellular pathogens such as M. tuberculosis in-
duces strong protective immunity and can be used as a sub-
unit vaccine (15, 16). In a study that was performed by Huy-
gen et al. a DNA vaccine encoding Ag85a was constructed
and considered as a simple way to generate protective im-
munity against M. tuberculosis. In this study, potent hu-
moral and cellular immune responses in vaccinated mice
were reported (42).

Furthermore, in a study conducted by Baldwin, chal-
lenging with CSU37, a highly virulent clinical isolate of M.
tuberculosis, resulted in Ag85a specific CTL, antibodies, and
lymphoproliferation responses in animal models previ-
ously administrated by DNA vaccines expressing secreted
forms of M. tuberculosis Ag85A (43). These two studies sup-
ported the idea that Ag85a A, as secreted components of
M. tuberculosis, has a high immunogenicity. Despite potent
immunogenicity of the Ag85a, a new vaccine based on this
antigen was not promising. MVA85A, a modified vaccinia
Ankara, expressing Ag85a, which initial research regard-
ing this vaccine showed high levels of induction of long-
lasting cellular immunity in combination with the BCG
vaccine, however, further results in clinical trials in 2015
were disappointing (14, 44-46).

Comparative genomic analysis has revealed that RD1
genes are present inM. tuberculosis andM. bovis, as virulent
strains of mycobacteria, while they are absent in avirulent
mycobacteria strains such as i BCG and H37Ra (47, 48). RD1
genes, including Rv3874 and Rv3875, express the 0 Cfp10
and e ESAT6, respectively, which are very important for the
virulence of M. tuberculosis. Introduction of these genes to
virulent strains elevate the virulence and immunogenic-
ity of the bacterium through modulating the production
of TNF-α production from macrophages and macrophage
cell death at different stages of the disease (19, 49). In a
study, Wu and et al. showed that Cfp-10 has specific epi-
tope restricted to CD8+ T cell (50). In the current study, the
ability of the DNA vaccine encoding two highly mycobac-
terial immunodominant antigens (Cfp10, Ag85a) was eval-
uated in BALb/c mice. The ratio of IFN-γ/IL-4 was about
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1.5 (29.63 pg/mL); however, in a previous study in which a
DNA vaccine encoding Ag85a-Tb10.5 was examined, this ra-
tio was over 20, which imply that Ag85a-Tb10.5 DNA vac-
cine is more potent in stimulating cellular responses. In
addition, it may presume that the combination of Ag85a
with Cfp10 may create new antigen with new properties
that completely differ with original ones. To address this
question more studies are essentially needed.

Further, compared to another our study in which a
DNA vaccine containing Mtb32c and HBHA fromM. tubercu-
losis was evaluated, the ratio of IFN-γ/IL-4 was 16. Interest-
ingly, in comparison to our two previous studies, the lev-
els of TGF-β and IL-4 in mice vaccinated with Ag85a-Cfp10
were higher than the BCG group, which implies that the
immune system is more shifted towards the humoral im-
mune system. As discussed, the aim of designing a new vac-
cine against TB is promoting cell mediated immunity. This
means that compared to our previous works, the Ag85a-
Cfp10 construct has relatively poor responses in stimulat-
ing effective immune responses. However, more studies
are required in the future. DNA vaccine is a suitable and
cost-effective way to introduce potent antigens to the im-
mune system and evaluate the capability of these antigens
in stimulating the immune system, especially for prelim-
inary studies. However, it has several limitations such as
the possibility of its integration into host genome and in-
crease in the risk of cancer and although previous studies
have shown that this possibility is low, serious concerns
still exists. Another limitation of human DNA vaccine is re-
lated to the poor immunogenicity of DNA vaccine. To over-
come this problem several strategies have been employed
such as codon optimization of gene of interest, use of elec-
troporation for injection, and co-administration of effec-
tive adjuvants. Despite these drawbacks, DNA vaccine still
remains as powerful means in the field of vaccine research
(51).

5.1. Conclusions

The most critical element of immune response against
TB is cell mediated immunity. In the present study, IL-12 and
IFN-γ were measured as biomarkers of cellular immunity.
High levels of IFN-γ was observed, however, the level of IL-
12 was not elevated. There was also the increased level of
IL-4 as a Th2 biomarker. The results may indicate that this
vaccine cannot potentially activate cell mediate immunity;
however, more studies are needed to investigate its effec-
tiveness on restraining TB and providing effective protec-
tion.
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