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Abstract: Gastric cancer (GC) is the third cause of cancer mortality in the world but the 19 

molecular mechanisms underlying the pathogenesis of GC remain little known. This study aimed 20 

to provide novel insights into GC tumorigenesis and identify potential key genes for the clinical 21 

management of patients through comprehensive bioinformatics analysis. mRNA (GSE26942, 22 

GSE66229, and GSE54129) and miRNA (GSE26595) microarray datasets were downloaded and  23 

Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were 24 

obtained using R software.  The FunRich database was applied to analyze the function and 25 

pathways enrichment of DEGs. Protein-protein interaction (PPI) network was assessed using 26 

STRING and visualized by Cytoscape software. Then, the value of key genes were validated. 27 

There were 516 DEGs that overlapped in three expression profile datasets and predicted targets 28 

of DEmiRs. DEGs were mainly enriched in biological processes related to apoptosis and 29 

regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism. Pathway analysis 30 

illustrated that DEGs were enriched in P53 signaling pathway, pathways in cancer, PI3K-AKT 31 

signaling pathway, small cell lung cancer, MicroRNAs in cancer, and apoptosis. We identified 5 32 

genes (CEMIP, CLDN1, SERPINE1, PMEPA1, and LIFR) that were common amongst all three 33 

datasets and predicted targets of DEmiRs, with a good performance in predicting overall 34 

survivals. Furthermore, we constructed miRNAs–mRNAs network, which revealed miRNAs and 35 

genes involved in the development and progression of GC, including hsa-miR-421, hsa-miR-36 

193a-3p, hsa-miR-576-5p, hsa-miR-1246, CTC1, RGMB, E2F6, IGF1, JARID2, and PHKA1. 37 

The findings of this study improved the understanding of molecular mechanisms of GC and the 38 

roles of identified DEmiRs in GC through interactions with DEGs  may provide potential targets 39 

for GC diagnosis and treatment. 40 

 41 
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 45 

1. Introduction: 46 

Being one of the major malignancies worldwide gastric cancer (GC) is the fifth (5.7%) most 47 

commonly diagnosed cancer and third (8.2%) leading cause of cancer-related mortality[1]. In 48 

2020, GC was diagnosed among over one million people and caused approximately 769,000 49 

deaths[2]. Although significant progresses have been achieved in recent years, the current 50 

standard treatments for patients with advanced GC stages remain unsatisfactory. The 5-year 51 

survival rate of advanced GC is 20–40% after radical gastrectomy combined with 52 

chemotherapy[3, 4]. Due to little symptoms in early stage of GC, the diagnosis is often delayed 53 

and some patients still suffer from unusual patterns of systemic recurrence[5]. Currently, the 54 

most frequent serum based tumor biomarkers for early detection of GC, including pepsinogen 55 

and α-fetoprotein (AFP), the carbohydrate antigens (CA), CA19-9, CA24-2, CA72-4, CA50, and 56 

CA125, as well as carcinoembryonic antigen (CEA), but sensitivity and specificity of these 57 

biomarkers are poor. Therefore, it is critical to identify molecular mechanisms and biomarkers 58 

that can be used for diagnosing GC and predicting recurrence. 59 

Recent advances in high-throughput microarray technologies could be applied to shed new light 60 

on the molecular mechanisms of human diseases. The major public databases such as Gene 61 

Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) are powerful public data 62 

repositories used to find and analyze differentially expressed genes (DEGs) corresponding to the 63 
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carcinogenesis and progression of various cancers [6-9]. Gene expression profiling combined 64 

with bioinformatics analysis has been employed to identify DEGs and signaling pathways that 65 

are associated with tumorigenesis and the tumor grade in human GC[7]. Yong et al utilized 66 

GEO, Oncomine, and other databases to examine the expression of PPP2CA in colorectal cancer 67 

and suggested that PPP2CA has an oncogene role and could be used as a prognostic biomarker in 68 

the progression of colorectal cancer[10]. Wang et al. confirmed SERPINH1 as a core gene 69 

involved in the regulation of GC development and promotes migration, cell cycle, and 70 

proliferation of GC cells via bioinformatics analysis and in vitro experiments[11]. Liu et al. used 71 

GEO, protein–protein interaction networks and other databases for bioinformatics analysis to 72 

examine DEGs related to invasion and metastases of GCs. After that, GC tissues were analyzed 73 

for  validating bioinformatics results that high levels of BGN expression were associated 74 

with  GC clinicopathological characteristics, including microvascular tumor thrombus, lymph 75 

node metastases, and vessel invasion [12].  76 

MicroRNAs (miRNAs) are a large group of small non-coding RNAs of ~22 nucleotides which  77 

act as crucial regulators of gene expression through binding to the 3' untranslated region (3'UTR) 78 

of target mRNAs resulting in post‑ transcriptional inhibition of gene expression[13, 14]. 79 

Differentially expressed miRNAs (DEmiRs) have been reported to be correlated with the onset 80 

and progression of multiple tumor types, such as GC[15].For example, A study on GC revealed 81 

up-regulation of miR-106a and a member of miR-17 in GC[16]. 82 

 Although a number of studies on DEGs and DEmiRs have been conducted and some of their 83 

functions in molecular functions, biological processes, and different pathways have been 84 

reported, there are still questions about how the DEGs and microRNAs interact through 85 

molecular pathways. Therefore, analyzing DEGs and DEmiRs illuminating the interactions 86 

Jo
urn

al 
Pre-

pro
of



5 | P a g e  
 

network among them is vital for understanding the molecular mechanisms of GC's causes and 87 

pathogenesis, which leads to further investigations for predictive and curative purposes. 88 

In the present study, we identified differentially expressed genes and microRNAs by analyzing 89 

three GC mRNA microarray datasets and one microRNA dataset. The purpose of this study was 90 

to distinguish key genes and miRNAs in GC using bioinformatics analysis to identify new 91 

potential diagnostic, therapeutic molecular markers of GC.  92 

 93 

2. Materials and methods 94 

2.1. Microarray data 95 

Three gene expression datasets (GSE26942, GSE66229, and GSE54129) and one miRNA 96 

expression dataset (GSE26595) were downloaded from the GEO database[17, 18]. The 97 

GSE26942 dataset was comprised of 205 GC and 12 normal gastric tissue sample mRNA 98 

expression datasets; GSE66229 included 300 GC tissue and 100 non-cancer tissues sample 99 

mRNA expression datasets; GSE54129 contained 111 GC and 21 normal gastric tissue sample 100 

mRNA expression datasets, and GSE26595 was comprised of 60 GC tissues and 8 non-cancer 101 

tissues. 102 

 103 

2.2. Identification of DE-microRNAs and DEGs 104 

All data were processed using R software (version 3.5.1, https://www.r-project.org/), and the 105 

LIMMA package (Linear Models for Microarray Data) was applied to identify DEmiRs and 106 

DEGs between GC tissue samples and control samples. To detect the DEmiRs, the p-value <0.01 107 

and logFC > 1 cutoff criterion were obtained in the screening. For DEGs, the threshold was P-108 

value < 0.05 and logFC> 0.01. 109 
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 110 

2.3. Prediction of targets for differentially expressed miRNAs 111 

 MultiMiR package (http://multimir.ucdenver.edu/) was used to predict targets of miRNAs[19]. 112 

MultiMiR package was used to predict targets of miRNAs by miRTarBase, TarBase, and 113 

miRcode, and only the target genes predicted in all three databases were selected for the 114 

following analysis. Venn diagram was applied to obtain a miRNA-target relationship, which 115 

were matched with DEGs acquired by microarray analysis to identify the interaction between 116 

DEmiRs and DEGs. 117 

 118 

2.4. Functional enrichment analyses 119 

FunRich (http://funrich.org/ faq) , which is an analysis tool applied to predict molecular function, 120 

biological processes, cellular components, and pathways of the selected target genes[20]. 121 

Statistical cutoff of enrichment analyses in FunRich software was set to <0.05 as usual and 122 

default quantity in researches. 123 

 124 

2.5. Protein–protein interaction network generation and module analysis 125 

The protein–protein interaction (PPI) network was constructed using the Search Tool for the 126 

Retrieval of Interacting Genes and Proteins (STRING) database (https://string-db.org)[21], 127 

followed by visualization using Cytoscape software[22]. The Molecular Complex Detection 128 

(MCODE) plug-in was applied to screen modules of hub genes from the PPI network with 129 

degree cutoff = 2, max. Depth = 100, k-core = 2, and node score cutoff = 0.2[23]. 130 

 131 

2.6. Survival analysis of key genes 132 
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Gene Expression Profiling Interactive Analysis (GEPIA) is a web server specialized for 133 

analyzing the RNA‑ seq data, which was utilized to compare mRNA expression between 211 134 

GC samples and 408 normal samples based on data from TCGA database 135 

(https://portal.gdc.cancer.gov/). GEPIA (http://gepia.cancer-pku.cn) and Kaplan-Meier plotter 136 

(KM plotter) tool (http://kmplot.com/analysis/index.php?p=background) were applied to validate 137 

the role of the key genes in the progression of GC as well as the transcriptional levels in normal 138 

gastric and GC samples to predict the prognostic value of the key genes in GC patients[24, 25].  139 

 140 
 141 
2.7. Construction of predicted miRNAs–mRNAs network 142 

Target genes of DEmiRs were predicted using MultiMiR package. We used CytoHubba package 143 

to construct the regulatory network of predicted miRNAs-mRNAs, then The top 10 mRNA and 144 

miRNAs with the highest degree were discovered. 145 

 146 

3. Results 147 

3.1. Identification of DEGs and DEmiRs 148 

A total of 15 DEmiRs were identified, among which 9 miRNAs were significantly up-regulated, 149 

and 6 miRNAs were significantly down-regulated (Table1) in GC tissues compared to 150 

non‑ cancerous gastric tissues. After searching by miRTarBase, TarBase, and miRcode 151 

databases, a total of 1716 target genes were predicted for DEmiRs. Overlap targets of DEmiRs 152 

with selected DEGs were identified, and VennDiagram was constructed for showing these 153 

overlap genes (Figure1), Details are in Supplementary. Out of 516 commonly DEGs among at 154 

least one of three datasets(GSE26942, GSE66229, and GSE54129)  and predicted targets of 155 

DEmiRs, 5 genes including 4 up-regulated(CEMIP, CLDN1, SERPINE1, and PMEPA1) and a  156 

down-regulated gene (LIFR) were common amongst all three datasets and predicted targets of 157 
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DEmiRs. We determined that hsa-miR-421 and hsa-miR-193a-3p were the main DEmiRs which 158 

target these 5 genes. Moreover, among three datasets, 57common DEGs which were not 159 

predicted as targets of DEmiRs were obtained. Volcano Plots are presented in Supplementary 160 

Figure S1 161 

 162 

 163 

 164 

 165 

 166 

Table 1.significantly up-regulated and downregulated miRNAs in GC tissues compared with 167 

normal gastric tissues. 168 

 miRNAs logFC 

 

P.Value 

 

adj.P.Val 

 

Highly expressed miRNAs hsa-miR-425 1.110298 3.97E-06 1.88E-06 

 hsa-miR-10a 1.242239 1.15E-05 0.000129 

 hsa-miR-98 1.273005 4.58E-05 0.001665 

 hsa-let-7d* 1.369433 3.43E-05 0.0006 

 hsa-miR-421 1.397872 4.72E-06 0.008625 

 hsa-miR-576-5p 1.458824 8.12E-06 0.000185 

 hsa-miR-1246 1.747138 9.95E-09 2.22E-05 

 hsa-miR-196b 2.033751 2.13E-06 0.001918 

 hsa-miR-135b 2.344572 3.24E-07 8.66E-05 

Low expressed miRNAs hsa-miR-204 -2.47754 9.82E-14 4.03E-11 
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 hsa-miR-363 -1.77033 6.83E-06 0.000175 

 hsa-miR-29c* -1.61882 1.76E-07 1.56E-05 

 hsa-miR-193a-3p -1.57946 3.57E-06 0.000116 

 hsa-miR-20b -1.4071 5.51E-05 0.000868 

 hsa-miR-193b -1.39806 6.12E-05 0.000929 

 169 

 170 

 171 

Figure1. Venn diagram analysis showing overlap of dysregulated genes among three datasets 172 

(GSE26942, GSE66229, and GSE54129) and predicted targets of miRNAs (multiMir.results). 173 

Different colors meant different datasets. 174 

 175 
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 176 

3.2. Functional and pathway enrichment analysis for identified target genes  177 

To further understand the function and mechanism, DEGs are imported into the online 178 

enrichment analysis tool, FunRich to identify GO analysis and KEGG pathway in GC. In the 179 

biological process (BP) term of GO analysis, the results indicated that genes were significantly 180 

enriched in apoptosis and regulation of nucleobase, nucleoside, nucleotide, and nucleic acid 181 

metabolism (figure2A). Regarding cellular component (CC) term, the DEGs were mainly 182 

involved in nucleus and cytoplasm (figure2B). In addition, cell component analysis showed that 183 

DEGs were enriched in protein serine/threonine kinase activity (figure2C). KEGG pathway 184 

analysis demonstrated that the DEGs were primarily related to P53 signaling pathway, pathways 185 

in cancer, PI3K-AKT signaling pathway, small cell lung cancer, MicroRNAs in cancer, and 186 

apoptosis (figure2D). 187 

 188 
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 189 

Figure2. GO And KEGG Analyses of overlapping DEGs in GC and predicted targets for 190 

DEmiRs: (A) biological process, (B) molecular function, (C) cellular component, and (D) KEGG 191 

pathway analysis. 192 
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 193 

3.3. PPI network of DEGs and module analysis 194 

The STRING database was adopted to determine the PPI pairs among the 516 overlapping 195 

DEGs, and the PPI network was constructed and visualized by the Cytoscape software. 196 

Cytoscape MCODE was applied to screen modules within the PPI network. A significant module 197 

was obtained from the MCODE plug-in in Cytoscape, which contained 28 nodes and 162 edges 198 

(figure3). The Biological pathway analysis revealed that these genes were significantly enriched 199 

in Trail signaling, Insulin pathway, class 1 PI3K signaling, Arf6 signaling events, and EGF 200 

receptor signaling. 201 

 202 

Figure3. Protein–protein interaction (PPI) network. The PPI network consisted of 28 nodes and 203 

162 edges were constructed by overlapping DEGs. 204 
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3.4.The five key genes validation 205 

The prognostic values of CEMIP, CLDN1, SERPINE1, PMEPA1, and LIFR were obtained from 206 

KM plotter (figure4). The curves showed that overexpression of the five genes are significantly 207 

related to decreased overall survival times of GC patients. Moreover, Gene expression 208 

validations were performed using GEPIA (figure5). Results indicated that mRNA expression 209 

levels of CEMIP, CLDN1, SERPINE1, and PMEPA1 were significantly upregulated in GC 210 

tissues compared to those in non‑ cancerous gastric tissues, while LIFR downregulated in GC 211 

samples compared to normal samples. For expression information of key genes see Supplementary 212 

Figure S2 213 

 214 

 215 

 216 

 217 
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 218 

Figure4. Kaplan-Meier overall survival analyses of patients with GC based on expression of the 219 

five key genes. (A) CEMIP, (B) CLDN1, (C) SERPINE1, (D) PMEPA1, (E) LIFR. 220 
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 222 

Figure5. Validation of the mRNA expression levels CEMIP (A), CLDN1(B), SERPINE1(C), 223 

PMEPA1(D) , and LIFR (E).in GC and gastric brain tissues using GEPIA. These five box plots 224 

are based on 408 GC samples (marked in red) and 211 normal samples (marked in gray). 225 

*P<0.05 was considered statistically significant.  226 

 227 

3.5. Construction of predicted miRNAs–mRNAs network 228 
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Based on the predicted miRNA-mRNA relationship of 12 DEmiRs,   DEmiR-mRNA regulatory 229 

network was obtained. The DEmiR-mRNA regulation network was shown in Supplementary. 230 

The top 4 miRNAs with higher degrees included hsa-miR-421 (up-regulated, degree = 236), hsa-231 

miR-193a-3p (down-regulated, degree = 125), hsa-miR-576-5p (up-regulated, degree = 101), and 232 

hsa-miR-1246 (up-regulated, degree = 44). The top 6 genes with higher degrees included CTC1, 233 

RGMB, E2F6, IGF1, JARID2, and PHKA1. 234 

4. Discussion 235 

In this study, mRNA and miRNA expression profiles were integrated to evaluate changes of 236 

genes (DEGs) and miRNA (DEmir) expression in GC. A total of 15 DEmiRs (9 up- and 6 down-237 

regulated miRNAs) and 516 DEGs were found by analyzing four gene expression profiles 238 

containing a combined 676 GC tissue samples and 141 normal gastric tissue samples. The results 239 

of functional enrichment analyses of the DEGs revealed that the genes enriched in a number of 240 

biological processes, such as apoptosis and regulation of nucleobase, nucleoside, nucleotide and 241 

nucleic acid metabolism. It has been revealed that de novo nucleotide synthesis, which is 242 

essential for cancer cell proliferation, is directly regulated by tumor suppressors and oncogenes 243 

[26-29]. KEGG pathway analysis demonstrated that the DEGs were involved in P53 signaling 244 

pathway, PI3K-AKT signaling pathway, small cell lung cancer, MicroRNAs in cancer, and 245 

apoptosis. P53 is a tumor suppressor gene and serves as a cellular stress sentinel for DNA 246 

damage and other cellular stresses[30]. TP53 mutations increase with the progression of GC 247 

from normal gastric mucosa[31, 32]. Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) 248 

signaling pathway is one of the key signaling pathways in the formation and progression of many 249 

cancers[33]. Researchers have demonstrated the promoting effects of the PI3K/Akt/mTOR 250 

pathway in cell growth, metastasis, resistance to chemotherapy metabolism, and survival[34]. 251 
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More interestingly, overexpression of PIK3CA could enhance the metastasis of gastric 252 

carcinoma through aberrant activation of PI3K1Akt signaling[35]. Similarly, targeted blockade 253 

of this pathway may inhibit gastric cancer growth and metastasis through downregulating the 254 

expression of MMP-2 and Ki-67[34]. CEMIP, CLDN1, SERPINE1, PMEPA1, and LIFR were 255 

common genes among DEGs of threes datasets and predicted targets of DEmiRs and are 256 

regulated by hsa-miR-421 and hsa-miR-193a-3p.  Subsequently, survival analysis of the 257 

relationship between the expression of the five genes and postoperative survival of patients 258 

indicated that these genes were significantly correlated with the overall survival of patients with 259 

GC. 260 

Cell migration inducing protein currently (CEMIP) is a Wnt-related protein, enriched in lung 261 

tumor-derived exosomes, breast, and exosomes brain metastatic, promotes BrM by generating a 262 

pro-metastatic environment[36]. Overexpression of CEMIP is related to uncontrolled 263 

proliferation and invasion of the tumor with distant metastasis, dedifferentiation, and lower 264 

survival of cancer patients. Up-regulation of CEMIP also protect the malignant tumor from the 265 

strict microenvironment in low glucose and hypoxia[37]. Over-expression of CEMIP has been 266 

reported in various cancer cells, such as gastric, lung, cervix, kidney, and colorectal cancer[38, 267 

39]. CLDN1 is one of the integral membrane proteins essential for the maintenance of normal 268 

epithelium, particularly barrier formation, signal transduction, and cell polarity[40]. Down-269 

regulation of CLDN1 could lead to the destruction of tight junctions and loss of cell-to-cell 270 

adhesion correlated with the development of the neoplastic phenotype in epithelial cells[41, 42]. 271 

Singh et al reported that CLDN1 protected colon cancer cells from anoikis, a form of apoptosis 272 

happening when cells detach from the extracellular matrix (ECM)[43]. Anoikis is a crucial 273 

mechanism in the maintenance of tissue development and homeostasis. CLDN1 has dual role as 274 
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oncogene and tumor suppressor, as well as it is a negative and positive prognostic factor in 275 

various cancers including gastric, colon, lung, breast, and ovarian [44-49]. Some investigations 276 

on colon and ovarian cancer have reported a role of CLDN1 on metastatic processes through 277 

activation of metalloproteinases, increasing migration, and reducing apoptosis. The elevated 278 

expression of CLDN1 in gastric cancer is associated with metastasis, tumor invasion, poor 279 

outcome, lymph node metastasis, and TNM stage [42, 50, 51]. SERPINE1 is a key regulator of 280 

the uPA system through inhibiting urokinase plasminogen activator (uPA) and principal inhibitor 281 

of tissue plasminogen activator (tPA)[52]. SERPINE1 plays a crucial role in different types of 282 

tumors not only as an oncogene but also serve as a new prognostic factor in certain cancers, 283 

including bladder cancer, oesophageal cancer, human melanoma, cell lung cancer, oral squamous 284 

cell carcinoma, and head and neck cancer[53-59]. It has also been indicated that down-regulation 285 

of SERPINE1 has a tumor-suppressive role in the phenotype of glioma tumor cells by activating 286 

p53 signaling pathway and inhibited the nasopharyngeal carcinoma migration and cell invasion 287 

in vitro[60, 61]. Upregulation of SERPINE1 has been shown in GC tissues compared with 288 

normal tissues, and overexpression of SERPINE1 is significantly associated with poor prognosis 289 

and unfavorable clinical features in patients with GC[62]. PMEPA1 is a type Ib transmembrane 290 

protein and involves in the transforming growth factor beta (TGF-β) signaling pathway. The 291 

TGF‑ β is a crucial regulator of homeostasis and suppresses tumor progression at the early stage 292 

of tumorigenesis[63]. TMEPAI protein was reported to regulate differentiation of epithelial 293 

tissues and cell proliferation, suggesting its function in the development of malignant tumors. 294 

Beside, a significant upregulation of PMEPA1 has been identified in malignant tissues of GC 295 

patients, and its higher expression was associated with poor prognosis[64, 65]. Leukemia 296 

inhibitory factor (LIF) is a type of cytokine which involves in various diseases, including cancer, 297 
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carcinogens, differentiation and Regulates cell proliferation[66]. LIF and LIFR expression are 298 

correlated with tumor differentiation, tumor stage, lymphovascular invasion, pTNM stage, lymph 299 

node, and metastasis in GC cells[67]. It has been identified that hsa-miR-421, which targets 300 

CREBZF, could play an important role in the development of GC and knock-down of this 301 

miRNA leads to an increased expression of CREBZF expression in GC[68]. An investigation 302 

Human Endothelial Cells revealed that SERPINE1 is a target gene of miR-421[69]. 303 

Dysregulation of miR-193a family in numerous malignancies has been reported and increasing 304 

evidence has been shown their pivotal roles in cancer pathways [70-72]. Several studies 305 

previously revealed that miR-193a-3p is a neoplasm suppressor in different cancers, including 306 

thyroid cancer, breast cancer, lung cancer, hepatocellular cancer, and colorectal cancer [73-78]. 307 

Furthermore, studies indicated that the expression levels of miR-193a-5p was significantly 308 

decreased in GC compared to adjacent normal tissue [79, 80]. 309 

The findings of the miRNAs–mRNAs network revealed a high degree of hsa-miR-421, hsa-miR-310 

193a-3p, hsa-miR-576-5p, and hsa-miR-1246, as well as CTC1, RGMB, E2F6, IGF1, JARID2, 311 

and PHKA1 were genes with the highest degree of connectivity, indicating that these miRNAs 312 

and mRNAs might play key roles in the development of GC. It has been suggested that hsa-miR-313 

1246, which is upregulated in a human gastric cancer cell line, may play important roles in the 314 

progression of GC, and exosomal miR1246 in serum could serve as a biomarker for the early 315 

diagnosis of GC[81, 82]. The E2F family of transcription factors regulate the expression of genes 316 

in various cellular processes such as, control of cell cycle, DNA damage response, 317 

differentiation, and apoptosis [83, 84]. The expression of E2F6, a member of E2F family, was 318 

significantly correlated with favorable overall survival of male patients and could be applied as 319 

novel prognostic markers to improve the survival rate and prognostic accuracy in GC[85, 86]. 320 
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Insulin-like growth factors (IGFs) can stimulate differentiation and cellular proliferation and 321 

have pathogenic roles in cancer [87-89]. Specifically, Li et al reported a Significant increased 322 

levels of serum IGF1 in GC patients[90]. Nevertheless, investigations on the regulatory 323 

mechanism and prognostic value of hsa-miR-576-5p, CTC1, RGMB, JARID2, and PHKA1 in GC 324 

have seldom been reported. The present study has the following limitations that should be 325 

noticed in future studies. Firstly, lack of experimental and clinical validation. Secondly, 326 

considering that we utilized available online tools with default options in several steps of the 327 

project, investigation of the expression level of identified key genes and miRNAs of GC in 328 

different contexts such as gender, age, tumor stage, and smoking habit was not applicable. 329 

Moreover, DEG limitation were logFC>1 & LogFC<1 & PValue<0.01, DEM limitation were 330 

logFC>1 & LogFC<1 & PValue<0.0001. 331 

 332 

 333 

 334 

5. Conclusion: 335 

In the present study, we identified several genes and miRNAs that closely associated with GC 336 

occurrence and development, including CEMIP, CLDN1, SERPINE1, PMEPA1, LIFR, hsa-miR-337 

193a-3p, and hsa-miR-421. Moreover, further studies are required to assess the effects of hsa-338 

miR-576-5p, CTC1, RGMB, JARID2, and PHKA1 on incidence of GC and improve the 339 

reliability and reproducibility of our results. The results provide important information about the 340 

critical roles of these genes in GC initiation and progression, which could be used for the 341 

diagnosis and treatment of GC patients.. 342 
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Figure S1. Volcano plot of DEGs related to GSE26942 (A), GSE66229 (B), GSE54129(C), and 541 

DEmiRs GSE26595 (D). 542 
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Figure S2. Expression information of key genes related to GSE26942 (A), GSE66229 (B), and 544 

GSE54129(C) 545 
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