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Abstract
The aim of this study was to determine the toxicity of cefixime in the inlet solution and effluent 
treated with the sono-electro-Fenton process using standard strains of microorganisms. This research 
was performed as an experimental study, which was conducted on a laboratory scale. The standard 
strains of Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) were used for 
bioassay. First, the stock solution of 1000 mg/L containing Cefixime was prepared, and for each 
bacterium (gram-positive and gram-negative), 5 samples from the inlet solution of the reactor and 
5 samples from effluent treated with the sono-electro-Fenton process were collected under optimal 
conditions. Finally, each sample was transferred to 10 mL of sterile lactose broth, and a loop of E. 
coli or S. aureus was dissolved in each sample. Toxicity changes were investigated by calculating 
the percentage of growth inhibition. The results showed that after 10 hours, the growth rate of both 
bacteria in the control and the effluent samples was higher, while the growth of bacteria in the inlet 
solution was lower and had higher toxicity. Based on the results of the study, the toxicity rate for E. 
coli was reduced from 70% in the inlet solution to 9.3% in the effluent (86.7% reduction in toxicity), 
and in the case of S. aureus, it was diminished from 25.3% in the inlet solution to 7% in the effluent 
(72.3% reduction in toxicity) after 10 hours. Based on the results of the present study, bioassay using 
microorganisms is an effective and useful method to study changes in the toxicity of cefixime. 
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1. Introduction
Today, pharmaceutical compounds are universally 

used to treat many diseases in humans, animals, and 
other living organisms. These compounds have been 
recognized as emerging pollutants in water in the last 
three decades due to their diversity, consumption, and 
stability (1). Antibiotics are widely used in medicine and 
veterinary medicine as well as animal feed as growth 
promoters. It is estimated that 15% of all drugs used in 
the world are attributed to antibiotics (2). Hospitals are 
the main places for the production of pharmaceutical 
effluents due to the high consumption of antibiotics (3). 
Cefixime is one of these antibiotics which belongs to 
a class of cephalosporins and is used to treat infections 
such as the upper and lower respiratory tract, middle 
ear, paranasal sinuses, and urinary tract (4,5). Due to 
inadequate treatment in wastewater treatment plants, 
antibiotics contaminate the receiving waters, including 
rivers and lakes, and ultimately pose a threat to the aquatic 
ecosystem (3). The persistence and non-degradability of 

antibiotics in the environment (surface and groundwater, 
drinking water, municipal wastewater, and soil) lead to 
the bioaccumulation of these drugs and toxic effects. This 
is a major concern in the world and is a serious risk to 
human health and the environment (3,6). Considering 
these cases, in order to protect the environment and 
public health, it is necessary to remove these pollutants 
from aqueous solutions to lessen toxicity and control their 
risks.

Bioassay is a method employed to assess the toxicity 
of municipal and industrial wastewaters and leachates 
and has been recommended by the US Environmental 
Protection Agency to identify toxic pollutants and their 
effects on the environment (7,8). Toxicity assessment 
is used to evaluate the reaction of aquatic organisms to 
measure the effects of one or more toxins, wastewater, 
or environmental factors alone and in combination. 
The lower toxicity of an aqueous solution leads to better 
growing conditions for aquatic organisms. Due to the 
simplicity of work, high practical value, availability of 
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laboratory facilities, and lower costs, this method has 
been used in this study (9,10).

In the last decade, advanced oxidation processes 
have attracted much attention to reduce the toxicity of 
contaminants and remove them from aqueous solutions 
(11). Advanced oxidation processes are processes based 
on the production of hydroxyl free radicals, and due to 
their high oxidation potential and non-selective type of 
pollutants, they have high efficiency in the degradation 
of organic matter (12-14). One of the most common 
methods of advanced oxidation processes is the electro-
Fenton method. This method is a combination of 
electrocoagulation and Fenton, which uses the electrode 
of iron and hydrogen peroxide and leads to the formation 
of hydroxyl radicals, and thus the degradation of the 
contaminant and its removal (15). The advantages of the 
electro-Fenton process include high efficiency, less sludge 
production, simple technology, low cost, easy operation, 
and low toxicity of the reactants (16). On the other hand, 
the combined use of the electro-Fenton process and other 
advanced oxidation methods has led to better results in 
the removal of contaminants. One of these processes is 
the ultrasonic process, the mechanism of which is the 
physical degradation of contaminants based on cavities 
or microbubbles that result from acoustic cavitation in 
water. These cavities cause the production of hydroxyl 
and hydrogen radicals, and ultimately, the reaction of 
hydrogen radicals with oxygen leads to the production of 
water radicals (17). The combination of the electro-Fenton 
process with the ultrasonic process, called sono-electro-
Fenton, will increase the mass transfer rate between the 
electrodes, clean the surface of the electrodes, reduce 
energy consumption, environmental compatibility, and 
ultimately increase the degradability of organic pollutants 
due to the chemical and physical reaction created (18). 
Due to the high toxicity caused by cefixime in aqueous 
solutions, the present study was performed to investigate 
the changes in the toxicity of cefixime by bioassay using 
standard strains of microorganisms during the sono-
electro-Fenton process.

2. Materials and Methods
2.1. Materials Needed and Sample Preparation

Cefixime powder was prepared from Sigma Company. 
Stock solution (1000 mg/L) of cefixime was prepared 
by dissolving 1 g of cefixime in 1 L of double-distilled 
water. The chemical characteristics of the cefixime were 
shown in Table 1 (19). To adjust the pH of the solution 
containing cefixime, H2SO4, and NaOH (with a purity of 
98%) were prepared from Merck Company (German). 
The standard strains of Escherichia coli and Staphylococcus 
aureus were prepared by the microbiology laboratory of 
Ardabil University of Medical Sciences, and the lactose 
broth for bioassay using microorganisms was provided by 
Pronadiza Company (Spain).

2.2. Description of the Sono-electro-Fenton Process
This experimental study was conducted on a laboratory 

scale in a cylindrical reactor with a volume of 1 L, 
which was equipped with two iron electrodes (one as a 
cathode and the other as an anode). The sample volume 
in the reactor was 1 L, and this reactor was placed in the 
ultrasonic chamber with a constant frequency of 37 kHz. 
DC power supply (Dazheng-PS-302D model) was used 
to provide power. The schematic diagram of the reactor 
used in this study was shown in Fig. 1. One of the most 
common methods of advanced oxidation is the sono-
electro-Fenton process. In this method, the electrodes of 
iron and hydrogen peroxide in the ultrasonic chamber 
lead to the formation of hydroxyl radicals and thus the 
degradation of the pollutant and its removal. Independent 
variables used for the sono-electro-Fenton process include 
pH (3-11), hydrogen peroxide (0.2-0.8 mL/L), voltage (4-
16 V), initial concentration of cefixime (10-60 mg/L), 
and time (10-80 minutes). At the end of the reaction 
time, the residual concentration of cefixime at 288 nm 
was determined by spectrophotometer (model DR-5000, 
HACH, Germany), and after determining the optimal 
conditions, the highest cefixime removal efficiency was 
obtained by the sono-electro-Fenton process. Then, in 
the optimal conditions, the changes in toxicity of the 
inlet solution and the effluent treated with sono-electro-
Fenton process were investigated.

2.3. Toxicity Test
 In order to perform the toxicity test, the bioassay 

method was applied using microorganisms (20). Standard 
strains of E. coli (gram-negative bacteria) and S. aureus 
(gram-positive bacteria) were used for the bioassay 
test. The test procedure was as follows: First, the lactose 
broth was prepared according to the instructions of 
standard methods. Then, 40 test tubes were prepared for 
both bacteria (10 mL of lactose broth in each tube), and 
considering three repetitions, 120 test tubes containing 
lactose broth were prepared and were sterilized in an 
autoclave (temperature of 121°C, the pressure of 15 
pounds per square inch, and time of 15 minutes). In 
the next step, E. coli was cultured on eosin methylene 
blue agar and S. aureus on nutrient agar medium under 

Table 1.  Characteristics of Cefixime 

Parameter Characteristics

Molecular formula C16H15N5O7S2

Molecular weight (grams per mole) 453.452

Purity 95.6%

Appearance White powder

Structural formula
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sterile conditions, and they were placed in an incubator 
at 37°C for 24 hours. For each bacterium, 5 tubes were 
used to test the toxicity of the inlet solution under optimal 
conditions (containing 10 mL of culture medium + 1 mL 
of the inlet solution of the reactor + 1 loop of bacteria), 5 
tubes were used to test the toxicity of the outlet solution of 
the reactor under optimal conditions (containing 10 mL 
of culture medium + 1 mL of the outlet solution of the 
reactor + 1 loop of bacteria), and 5 tubes were selected 
as controls (containing 10 mL of culture medium + 1 
loop of bacteria). Additionally, 5 control tubes (lactose 
broth only) were used to reset the spectrophotometer at 
600 nm. Then, bacteria were cultured next to the flame, 
and one colony with a loop was removed from each 
tube and  after inoculation and dissolution in the wall of 
the test tube, they were placed in an incubator at 37°C. 
After resetting the spectrophotometer, the absorption 

rate of 3 samples, i.e., the tube containing the input 
solution, the output solution, and the control, was read 
by the spectrophotometer every 2 hours. The absorbance 
reading was continued in 5 steps for 10 hours. Finally, the 
growth inhibition percentage for each bacterium in inlet 
and outlet solution samples was obtained by the following 
equation. 
GI (%) = [1 - (OD600S/OD600B) × 100]                   (1)

In the above equation, GI represents the percentage 
of growth inhibition. OD600S and OD600B were the optical 
density of the sample and the control at a wavelength of 
600 nm, respectively.

3. Results and Discussion
3.1. The Effects of Variables and Achieving Optimal 
Conditions

Findings related to the effect of independent variables 
on the son-electro-Fenton process were shown in Fig. 2. 
In advanced oxidation processes, especially the sono–
electro-Fenton process, pH plays an important role in 
the removal of contaminants. In Fig. 2a, with increasing 
pH, the removal efficiency decreased; therefore, a higher 
removal percentage was observed at acidic pH. In the 
acidic pH range, the Fe2+ ion is more solubale, which leads 
to the production of hydrogen peroxide, followed by the 
production of hydroxyl radicals. Finally, the oxidizing 
power of the hydroxyl radical in acidic conditions 
increases, and the removal efficiency increases. In this 
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Fig. 1. Schematic Diagram of the Sono-electro-Fenton Reactor. 1) DC Power, 2) Anode, 3) 
Cathode, 4) Sample Tank, 5) Ultrasonic Chamber.

Fig. 2. The Effect of Independent Variables on the Efficiency of the Sono-electro-Fenton 
Process and Achieving Optimal Conditions. (a) pH, (b) H2O2 (mL/L), (c) Voltage (volt) and 

Electrolysis Time (min), and (d) Initial Concentration of Cefixime (mg/L).
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study, pH = 3 was selected as the optimal pH.
The effects of changes in the concentration of hydrogen 

peroxide on the removal efficiency were represented in 
Fig. 2b. With increasing the amount of hydrogen peroxide 
from 0.2 to 0.8 mL/L, the removal efficiency increased. 
Based on the results, the maximum removal efficiency 
was observed at the concentration of 0.8 mL/L, which 
was selected as the optimal concentration. A normal 
increase in the concentration of hydrogen peroxide due to 
the reaction with ferrous ions leads to the production of 
hydroxyl radicals and an increase in oxidizing power, and 
the produced radicals have more access to the pollutant 
over time and cause more degradation of the pollutant.

The effect of the voltage on the efficiency of the sono-
electro-Fenton process was investigated and it was found 
that increasing the voltage resulted in an increase in the 
removal efficiency, the results of which are shown in Fig. 
2c. By increasing the voltage from 4 to 16, the removal 
efficiency increased from 48% to 89%, so 16 V was 
considered as the optimal voltage.

The effect of the initial concentration of cefixime on 
the removal efficiency was presented in Fig. 2d. With 
increasing the initial concentration of antibiotics from 
10 mg/l to 60 mg/L, a diminution in removal efficiency 
could be detected. In the present study, the concentration 
of 10 mg/L was selected as the optimal concentration. By 
increasing the initial concentration of the contaminant, 
the amount of contact and exposure of the contaminant 
to hydroxyl radicals declines, which causes more 
consumption of hydroxyl radicals and decreases the 
removal efficiency.

Electrolysis time is one of the effective factors in 
performing advanced oxidation processes. As shown 
in Fig. 2c, the process efficiency increased dramatically 
with increasing electrolysis time. The removal efficiency 
improved from 35% in 10 minutes to 90% in 80 minutes. 
As the electrolysis time of the electrodes increases, they 
have more opportunity to produce ferrous ions; with 
increasing ferrous solubility and reaction with hydrogen 
peroxide, more hydroxyl radicals are produced and the 
removal efficiency is improved. Accordingly, in our study, 
80 minutes was considered as optimal electrolysis time. 
Finally, under the above-mentioned optimal conditions, 
the removal efficiency reached 91.2% using sono-electro-
Fenton process.

3.2. Toxicity Results
The results of the bioassay test conducted on the inlet 

solution and the effluent treated with the sono-electro-
Fenton process were described in Figs. 3 and 4. In these 
two figures, after 10 hours, the growth rate of both bacteria 
in the control and effluent samples was observed to be 
higher; more growth indicates less toxicity. However, the 
growth of bacteria in the inlet solution was low, which 
represents the high toxicity of the inlet solution. Results 

of growth inhibition of the inlet solution and effluent in 
optimal conditions (pH = 3, H2O2 = 0.8 mL/L, voltage = 
16 volts, initial concentration of antibiotic = 10 mg/L, and 
electrolysis time = 80 minutes) using sono-electro-Fenton 
process for E. coli and S. aureus bacteria are presented in 
Table 2. As can be seen, the toxicity (growth inhibition 
rate) of the inlet solution was reduced by treatment with 
the sono-electro-Fenton process. After 10 hours, the 
average growth inhibition rate for E. coli was decreased 
from 69.5% for the inlet solution to 11.2% for the outlet 
solution (83.9% reduction in toxicity), while for S. aureus, 
it was reduced from 25% for the inlet solution to 8% for 
the outlet solution (68% reduction in toxicity). In the 
present study, E. coli and S. aureus bacteria were used 
for bioassay. The reason for the use of these bacteria is 
their prevalence in wastewater and aquatic environments 
(21). In the bioassay, many organisms such as fish, algae, 
bacteria, and a variety of freshwater and marine organisms 
such as Daphnia are used. Naddafi et al applied standard 
strains of E. coli and S. aureus to study the toxicity of zinc 
oxide and titanium oxide nanoparticles using bioassay 
(20). In this study, the reduction in toxicity for E. coli 
and S. aureus in the outlet solution was 83.9% and 68%, 
respectively. Results of a study conducted by Rahmani 
et al on detoxification of sulfathiazole (30% reduction 
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Fig. 4.  Growth Trend of Staphylococcus Aureus (Gram-positive) in Bioassay Test. 
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in toxicity) and sulfate methoxazole (48% reduction in 
toxicity) were in line with those of our study (22). Another 
study was conducted by Ashrafi et al on the detoxification 
of industrial dyes using a variety of Gram-negative and 
Gram-positive microorganisms; their results showed that 
the toxicity of effluent from the process was significantly 
reduced (9). In this study, E. coli was more sensitive, 
compared to S. aureus, which is related to the ability 
of gram-positive bacteria to form spores and cell wall 
structure (23). In the present study, the hybrid process of 
sono-electro-Fenton efficiently reduced the toxicity of the 
effluent after the decomposition of the cefixime under the 
optimal removal conditions. Results of studies conducted 
by other researchers have also shown the effective 
role of advanced oxidation processes in reducing the 
toxicity of pollutants using different species of organisms 
(24,25). In a study, Dirany et al evaluated the toxicity of 
sulfamethoxazole by bioassay using microorganisms 
and noted that the toxicity of the effluent treated with 
the electro-Fenton process was reduced by about 75%, 
compared to the inlet solution (26). The sono-electro-
Fenton process, using a soluble fraction of iron ions and 
the oxidation power of hydrogen peroxide, as well as the 
sonic activation of ultrasonic waves, produces a hydroxyl 
radical that leads to the degradation of pollutants into 
simpler compounds such as water and carbon dioxide 
and beneficially reduces the biological toxicity of organic 
pollutants (27,28).

4. Conclusion
Results of our study revealed that bioassay as a useful 

and valuable method showed changes in the toxicity of 
cefixime in the inlet and outlet solutions treated with 
sono-electro-Fenton process using E. coli and S. aureus 
bacteria. In addition, the sono-electro-Fenton process, as 
one of the advanced oxidation methods with acceptable 
purification efficiency, could cause a reduction in the 
toxicity of cefixime in aqueous solutions.
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