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ABSTRACT

The prevalence, antibiotic resistance, and virulence characteristics of Staphylococci from hospitals, livestock, municipals, and poultry waste-

waters were investigated in Ardabil, Iran. From 155 staphylococcal isolates, 44.5% were coagulase-positive Staphylococcus (CoPS) and 55.5%

were coagulase-negative Staphylococcus (CoNS) spp. Both CoPS and CoNS species were mainly found in hospital and poultry wastewater

samples. The most prominent CoPS and CoNS species were Staphylococcus aureus at 80% and Staphylococcus xylosus at 37%. Methicillin

resistance was found in 2% of S. aureus isolates. Overall, 49.2% of CoPS and 47.6% of CoNS isolates exhibited multidrug resistance pheno-

types. CoPS isolates were the most resistant to penicillin (89%) and erythromycin (62%) and CoNS isolates exhibited the highest resistance to

erythromycin (55%) and tetracycline (49%). Inducible clindamycin resistance was detected in 11% of S. aureus isolates. The ermC and aac

genes were detected as the most common macrolide–lincosamide–streptogramin B and aminoglycoside-resistance encoding genes in

82.5 and 22.5% of S. aureus isolates, respectively. Most of the S. aureus isolates were positive for multiple virulence factors. The methicil-

lin-resistant S. aureus isolates belonged to SCCmec type V. A new spa type t19215 was also identified. The occurrence of multidrug-resistant

S. aureus with diverse genetic resistance and virulence background in wastewater is of great health concern.

Key words: coagulase-negative Staphylococci, coagulase-positive Staphylococci, drug resistance, pathogenic factors, sewage,

slaughterhouse

HIGHLIGHTS

• Ten coagulase-negative and four coagulase-positive Staphylococcus spp. were identified in wastewaters in Iran.

• 50% of both coagulase-negative and coagulase-positive Staphylococcus spp. isolates were multidrug-resistant.

• Occurrence of methicillin-resistant S. aureus was rare in wastewater samples in Iran.

• S. aureus isolates with high virulence potentials were common.

• A new spa type t19215 was identified in S. aureus isolates.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Wastewater is a complex ecological environment hosting different types of microorganisms (Börjesson et al. 2010). Patho-
genic bacteria enter the wastewater from hospitals, or from any diseased people or healthy carriers. Animal wastes often

originate from farms, slaughterhouses, meat processing industries, and from rodents found around sewages (Dweba et al.
2018). When untreated wastewater reaches water used for drinking or irrigation of vegetable farms there can be significant
public health risks. Pathogens in wastewater are transmissible through ingesting drinking water or crops contaminated with

sewage or as a result of contact with the animal, human, or insect carriers (Wagner & Loy 2002). The wastewater is an
environmental reservoir which plays a significant role in the development and spread of antimicrobial resistance
(Martinez-Huitle & Ferro 2006; Börjesson et al. 2010). Several studies showed the residues of many antibiotics in wastewaters
around the world (Watkinson et al. 2009). Residual antibiotics are capable of selecting resistant bacteria through inhibiting or

killing the susceptible organisms. Resistant bacteria survive in the presence of antibiotics and act as vectors for the dissemi-
nation of antibiotic-resistance genes (Kruse et al. 1999). Excessive and uncontrolled application of antibiotics in human
medicine, veterinary, and as growth promoting agents in food-producing animals lead to an increment in antibiotic resistance

and in the spread of bacteria carrying resistance genes (Iversen et al. 2002; Dweba et al. 2018). The major risk threatening
general health is the environmental bacteria transferring resistance encoding genes to human pathogens (Moges et al. 2014).
The majority of studies regarding the characterization of resistant bacteria in wastewater have emphasized the fecal pollution

indicator bacteria (Zaatout et al. 2021). However, other antibiotic-resistant clinically significant pathogens have been
reported in wastewater as well (Nishiyama et al. 2021).

Staphylococcus spp. are normal flora, found in mucus membranes and skin of human and other mammals (Gómez et al.
2016) which are capable to enter hospital, municipal, livestock, and poultry wastewater. Hence, they have been frequently
isolated from wastewater of various sources (Faria et al. 2009; Börjesson et al. 2010; Goldstein et al. 2012; Heß & Gallert
2014; Kumar et al. 2015). Staphylococcus genus comprises several species classified into coagulase-positive Staphylococci
(CoPS) and coagulase-negative Staphylococci (CoNS) groups. Most staphylococcal infections are caused by CoPS. So far,

seven CoPS species have been recognized: Staphylococcus intermedius, Staphylococcus aureus, Staphylococcus schleiferi
subsp. coagulanse, Staphylococcus delphini, Staphylococcus hyicus, Staphylococcus lutrae, and Staphylococcus
pseudintermedius. S. aureus is the most common and highly virulent species in the genus responsible for a diverse array

of life-threatening nosocomial and community-acquired infections (Sasaki et al. 2010; Holmes et al. 2014; Kumar et al.
2015). Instead, CoNS established themselves as opportunistic pathogens which are less virulent than CoPS. However,
they can cause clinically significant infections in immunocompromised people and in those with implanted foreign materials
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such as catheters, shunts, and prosthetic joints (Hitzenbichler et al. 2017). There are currently over 40 identified species in the

CoNS group, in which Staphylococcus haemolyticus, Staphylococcus epidermidis, and Staphylococcus saprophyticus are
mostly responsible for infection in human beings (Hitzenbichler et al. 2017). Other species, such as Staphylococcus hominis,
Staphylococcus warneri, Staphylococcus capitis, Staphylococcus simulans, Staphylococcus cohnii, Staphylococcus xylosus,
Staphylococcus saccharolyticus, and Staphylococcus lugdunensis are sometimes collected from clinical specimens (Garza-
González et al. 2010). The most striking situation regarding Staphylococci is emerging methicillin-resistant strains. Methicillin
is the first semisynthetic penicillinase-stable penicillins including oxacillin, cloxacillin, naficillin, and dicloxacillin. Staphylo-
coccus spp. resistant to this group are historically termed Methicillin-Resistant Staphylococci (MRS). What sets it apart is that

MRS isolates are resistant to all other currently available β-lactam antimicrobial agents, with the exception of ceftaroline
(CLSI 2017). Additionally, MRS isolates are commonly resistant to several other classes of antibiotics such as aminoglyco-
sides, chloramphenicol, quinolones, macrolides, and tetracycline (Kumar et al. 2015). The resistance against methicillin is

mainly mediated by mecA gene. Staphylococcal cassette chromosome mec (SCC mec) has been reported as the only
vector for the mec A gene (Zhang et al. 2005).

Studies showed large differences in Staphylococci population structure among wastewaters. The structure of the bacterial

community is likely influenced by the operating parameters and composition of the effluents (Börjesson et al. 2010). Some
studies have shown that common disinfecting agents such as chlorine and ultra-violet irradiation could not efficiently
reduce the antibiotic-resistant bacteria and antibiotic resistance genes in the wastewater disinfecting process (Munir et al.
2011). So, understanding the microbial communities is essential for the implementation of effective disinfection approaches
in wastewater treatment facilities (Gonzalez-Martinez et al. 2018).

The goals of the current study are (i) to assess the occurrence of Staphylococcus spp. in hospitals, slaughterhouses (poultry
and livestock), and municipal wastewater sources in Iran; (ii) to evaluate the antimicrobial resistance profile of the isolates

against common antibiotics; (iii) to investigate the occurrence of Methicillin-Resistant S. aureus (MRSA) isolates; (iv) to ident-
ify the SCCmec- and spa type of S. aureus isolates; (v) to study the genetic background responsible for aminoglycoside and
macrolide resistance in S. aureus isolates; and (vi) to identify the virulence determinants of S. aureus isolates.

2. MATERIALS AND METHODS

2.1. Sampling

Sampling was done from wastewaters from municipal, hospitals, and slaughterhouses (poultry and livestock) in Ardabil,
northwestern Iran. From August 2017 to June 2018, a total of 40 non-treated wastewater samples were taken twice a
month on the 1st and 15th of each month. Specimens were collected in sterile glass bottles (500 mL), and transferred to

the microbiology laboratory in ice cold containers, and were analyzed in less than 6 h after collection (Rahimi & Bouzari
2015; Gómez et al. 2016). This study was approved by the regional ethics committee of Islamic Azad University of Shiraz
(IR.IAU.SHIRAZ.REC.1399.014).

2.2. Isolation and identification of Staphylococcus spp.

Samples (250 mL) were diluted 10-fold with 0.9% NaCl (normal saline) and filtered through a 0.45 μm pore membrane (Milli-

pore Corporation, Bedford, MA, USA). For enrichment of Staphylococcus isolates captured on filters, the filters were placed
in tubs containing 40 mL M Staphylococcus broth (Becton, Dickinson and Company, Franklin Lakes, NJ, USA), shaken and
incubated at 37 °C for 24 h. A 10-μL aliquot of overnight bacterial culture was transferred on Mannitol salt agar (BioMaxima,

Lublin, Poland) for the isolation of total Staphylococcus spp. Then, the plates were incubated at 37 °C for 24 h (Goldstein
et al. 2012). Up to eight colonies per wastewater specimen with morphology resembling Staphylococci were cultured on
Brain Heart Infusion (BHI) agar (BioMaxima, Poland) to provide a richer environment for bacterial growth, and then initially
identified by conventional microbiological tests [Catalase, Gram stain, DNase (Merck, Darmstadt, Germany) and tube coa-

gulase tests]. CoNS were identified using a commercial kit (Microgen™ Staph-ID system, UK). This system employs 12
standardized biochemical tests to characterize important species of the Staphylococci. S. aureus isolates were identified by
PCR targeting the thermonuclease gene (nuc) with the primers and cycling conditions shown in Supplementary material,

Table S1 (Murakami et al. 1991). PCR was carried out in a total volume of 25 μL using 12.5 μL of Premix Taq® mix (Cinna-
Gen, Tehran, Iran), 1 μL of template DNA (5 μg), l μL (10 pmol) of each forward and reverse primers, and 9.5 μL of nuclease-
free water. PCR products were analyzed via electrophoresis at 100 V for 1 h in a 1% agarose gel (Sinaclon, Tehran, Iran),
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stained with DNA-safe stain (Sinaclon, Tehran, Iran) and DNA bands were visualized using UV illumination (Uvi Tec, Cam-

bridge, UK). S. aureus ATCC 33591 was used as the positive control and the negative control was nuclease-free distilled water.
After identification of the isolates, two purified colonies grown on BHI agar were transferred into 10 mL of Trypticase soy

broth (TSB) (Merck, Germany) and incubated overnight at 37 °C. Then, the cultures were aliquoted in 1.5 mL of cryovials

including 15% glycerol (Merck, Germany), and stored at �80 °C until further use.

2.3. Antimicrobial susceptibility analysis

Antimicrobial susceptibility analysis was performed with the disk diffusion approach on Muller–Hinton agar (BioMaxima,

Poland) according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) guidelines (CLSI
2017). The evaluated antibiotics (Padtan Teb, Iran) were chloramphenicol (30 μg), co-amoxiclav (30 μg), tetracycline
(30 μg), penicillin (10 μg), erythromycin (15 μg), ciprofloxacin (10 μg), cefazolin (30 μg), clindamycin (2 μg), imipenem

(10 μg), ceftriaxone (100 μg), rifampicin (30 μg), mupirocin (5 μg), trimethoprim sulfamethoxazole (25 μg), azithromycin
(15 μg), gentamicin (10 μg), and amikacin (30 μg).

Methicillin resistance was investigated using the cefoxitin disk diffusion test (inhibition zone diameter �21 mm indicated
MRSA) and oxacillin minimum inhibitory concentration (MIC) (�4 μg/mL indicated MRSA) were determined using the agar

dilution method (concentration range: 0.125–512 μg/mL) (CLSI 2017).
MICs of erythromycin, kanamycin, and tobramycin were assessed using a standard agar dilution technique (0.125–512 μg/

mL). The isolates with MICs of �8 (μg/mL), �64 (μg/mL) and �16 (μg/mL) were defined as erythromycin-, kanamycin- and

tobramycin-resistant, respectively (CLSI 2017).
BHI agar including 6 μg/mL vancomycin (Bio Basic, Canada) was used to screen isolates resistant to vancomycin. The

MICs for isolates growing on BHI–vancomycin screening agar were determined by agar dilution technique (0.125–512 μg/

mL). Resistance against vancomycin was considered as MIC� 16 (μg/mL). The susceptibility testing was carried out and
interpreted based on the CLSI’s guidelines. S. aureus ATCC33591 was used as a quality control strain (CLSI 2017).

The D-test was carried out to identify inducible clindamycin resistance in clindamycin-susceptible staphylococcal isolates
resistant to erythromycin. The clindamycin disks (2 μg) were located 25 mm apart (center to center) from erythromycin disks

(15 μg). Following incubation at 37 °C for 18 h, the D phenotype was indicated by bacterial lawn exhibiting flattening of the
inhibition zone (D formation) surrounding clindamycin disks near the erythromycin disks (Steward et al. 2005; Heß &
Gallert 2014; CLSI 2017).

2.4. Detection of antimicrobial resistance genes

Erythromycin-resistant genes (erm A, erm C, erm B, erm TR, msr A), aminoglycoside-resistant genes (ant, aac, aph(2)-Ib, aph
(2)-Ic, aph(2)-Id), and methicillin-resistant gene (mec A) were detected through PCR using specific primers (Supplementary

material, Table S1) (Choi et al. 2003; O’Sullivan et al. 2006; Leelaporn et al. 2008; Dibah et al. 2014). DNA from previously
identified isolates containing target genes was used as a positive control in the PCR experiment (Omid et al. 2021).

2.5. Detection of virulence genes

PCR (Supplementary material, Table S1) was used to detect the genes encoding enterotoxins (sea, seb, sec, and sed), exfolia-
tive toxins (eta and etb), hemolysin toxins (hla and hld), Panton-Valentine leucocidin (PVL,lukF/S), and the toxic-shock
syndrome toxin (tst) (Omid et al. 2021). DNA from previously identified isolates carrying the corresponding virulence

genes was used as a positive control in PCR experiments (Omid et al. 2021).

2.6. Molecular typing

2.6.1. SCC mec typing

SCCmec type was determined on all mecA-positive isolates. Two series of multiples PCR assays were used to detect SCCmec
types and subtypes I, II, III, IVa, IVb, IVc, IVd, and V according to the conditions in Supplementary material, Table S1 with

some changes in the PCR cycling conditions and annealing temperature (Omid et al. 2021). Amplicons were analyzed as
introduced previously in this paper. DNA harvested from previously identified isolates with the known SCCmec types was
used as a positive control in PCR testing (Omid et al. 2021).
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2.6.2. Spa typing based on repeat pattern analysis

The S. aureus strains’ genetic profiles were generated using protein A (spa) typing. The spa gene polymorphic X region was
amplified via primers and PCR conditions reported in Supplementary material, Table S1 as introduced by Harmsen et al.
(2003). Both strands of the amplified fragments were sequenced by Macrogen (South Korea). The spa types were identified
using the spa typing website available online at http://www.spaserver.ridom.de.

3. RESULTS

A total of 155 Staphylococcal isolates were collected from four wastewater sources. Overall, 69 (44.5%) and 86 (55.5%) iso-

lates were found to be CoPS and CoNS, respectively. Figures 1 and 2 show the distribution of the isolates based on species
type. S. aureus (n¼ 55; 80%) and S. xylosus (n¼ 32; 37%) were the most prominent CoPS and CoNS species isolated from
wastewater samples, respectively. In total, most of CoPS (53.6%) were isolated from hospital wastewater samples and most of

CoNS (38.4%) species were isolated from poultry wastewater samples. S. aureus, the most clinically important CoPS, com-
prised 97% (n¼ 37/38), 78.5% (n¼ 11/14), and 64% (n¼ 7/11) of the CoPS isolates from hospitals, municipal, and
livestock wastewater samples, respectively, and S. intermedius (n¼ 4/6; 67%) were the most common species isolated

from poultry wastewater samples (Figure 1). In CoNS, S. lentus (n¼ 12/33; 36%), S. xylosus (n¼ 9/17; 53%), and (n¼ 7/
20; 35%), S. chromogenes (n¼ 7/17; 41%) were the majority of isolates from poultry, municipal, livestock, and hospital waste-
water samples, respectively (Figure 2).

The susceptibility profile of staphylococcal isolates, evaluated through the disk diffusion assay, is provided in Tables 1 and
2. In general, imipenem, rifampicin, mupirocin, vancomycin (for each, n¼ 0/69; 0%), and penicillin (n¼ 49/69; 89%) were
the antibiotics with the highest and the lowest activity against CoPS isolates, respectively. CoNS isolates were the most resist-
ant to erythromycin (n¼ 47/86; 55%) followed by tetracycline (n¼ 42/86; 49%) and azithromycin (n¼ 29/86; 34%),

respectively.
As shown in Supplementary material, Table S2, totally, 49% (n¼ 34/69) CoPS isolates were multidrug-resistant (MDR)

(resistant against three or more classes of antibiotics). Among CoPS species, S. aureus (n¼ 28/55; 51%), S. intermedius
(n¼ 4/10; 40%), and S. hyicus (n¼ 2/3; 67%) showed an MDR phenotype, respectively.

Antibiotic resistance patterns of CoNS isolates are shown in Supplementary material, Table S3. Results showed that in
total, 46.5% (n¼ 40/86) of CoNS isolates were MDR. Among CoNS species, 55.5% (n¼ 5/9), 58% (n¼ 11/19), 75% (n¼
3/4), 62.5% (n¼ 5/8), 44% (n¼ 14/32), 17% (n¼ 1/6), and 33% (n¼ 1/3) of S. chromogenes, S. lentus, S. simulanse,
S. warneri, S. xylosus, S. hominis, and S. cohnii subsp. urealyticum showed an MDR phenotype, respectively.

According to oxacillin MIC (Supplementary material, Table S4) and mecA PCR testing, 2% (n¼ 1/55) of S. aureus isolates
was identified as MRSA. This isolate belonged to SCCmec type V.

Figure 1 | Frequency distribution of CoPS isolates collected from wastewater in Ardabil, northwestern Iran.
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Results of MIC testing showed that 64% (n¼ 35/55) of S. aureus isolates were erythromycin-resistant (Supplementary

material, Table S4). Overall, 11% (n¼ 6/55) of erythromycin-resistant and clindamycin-susceptible isolates were found to
be D-test positive. All erythromycin-resistant S. aureus isolates were assessed for the existence of the prominent MLSB resist-
ance genes (erm A, erm B, erm C, erm TR, and msrA). The most common MLSB resistance gene erm C was found in 82.5%

(n¼ 33/40) of these isolates, while erm A gene was not found in our isolates (Figure 3). A total of 10 different genetic profiles
were obtained for macrolide resistance encoding genes with profile erm B, erm C, msrA having the highest (25%) frequency
(Supplementary material, Table S5).

According to MIC testing, resistance to aminoglycoside antibiotics was observed in 11% (n¼ 6/55), 4% (n¼ 2/55), and 2%
(n¼ 1/55) of S. aureus isolates against tobramycin, kanamycin, and gentamycin, respectively. The resistance gene aac was
detected in 75% (n¼ 9/12) and the ant and aphc genes were identified in 33% (for each, n¼ 4/12) of aminoglycoside-resistant

isolates. Other aminoglycoside resistance-encoding genes were not identified in our S. aureus isolates (Figure 3). A total of
four different genetic profiles (aac, ant, aac/aphc, aac/ant/aphc) were obtained for aminoglycoside resistance-encoding
genes with profile only aac having the highest (42%) frequency (Supplementary material, Table S5).

The results of PCR testing revealed 89% (n¼ 49), 5.4% (n¼ 3), 49% (n¼ 27), 14.5% (n¼ 8), 33% (n¼ 18), 94.5% (n¼ 52),

96% (n¼ 53), 84% (n¼ 47), and 31% (n¼ 17) of the S. aureus isolates (n¼ 55) were positive for sea, seb, sec, sed, eta, hla, hld,
tst, and pvl virulence encoding genes, respectively. hld was the most common virulence gene and etb gene was not observed
in this study (Figure 4). Regarding the simultaneous presence of virulence encoding genes, 23 different combined profiles

were identified among S. aureus isolates (Supplementary material, Table S6). The profile, seaþ hld þ hlaþ tst with (n¼ 7;
13%) isolates showed the highest frequency.

In total, among eight S. aureus isolates subjected to spa typing, six different spa types were identified and one (12.5%) iso-

late was not typeable. spa type t346 was detected in 25% (n¼ 2) and types t026, t14870, t937, t19215, and t17068 were
detected in 12.5% (for each, n¼ 1) of S. aureus isolates, respectively. The t19215 is a new spa type identified in this study
(spa.ridom.de/194598, 2020, MRSA).

4. DISCUSSION

Despite the extensive investigation on Staphylococcus spp. in clinical settings, systematic assessments of their role in the
aquatic environment and sewage samples are limited in most parts of the world. We found that the dominant species of
Staphylococcus spp. was CoNS (55.5%) which itself is dominated by in wastewater samples. Similar results were reported

Figure 2 | Frequency distribution of CoNS isolates collected from wastewater in Ardabil, northwestern Iran.
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Table 1 | Antibiotic susceptibility patterns of CoPS isolated from wastewater by disk diffusion assay in Iran

CoPS

Antibiotic

S. aureus n¼ 55 n (%) S. intermedius n¼ 10 n (%) S. hyicus n¼ 3 n (%)
S. schleiferi Subsp.

Coagulans n¼ 1 n (%) Total n¼ 69 n (%)

Sa Ib Rc S I R S I R S I R R I S

P 6 (11) 0 49 (89) 8 (80) 0 2 (20) 3 (100) 0 0 1 (100) 0 0 49 (89) 0 18 (26)

AMC 45 (82) 0 10 (18) 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 0 0 59 (85.5)

C 41 (74.5) 0 14 (25) 8 (80) 0 2 (20) 1 (33.3) 0 2 (66.6) 1 (100) 0 0 18 (26) 0 51 (74)

TE 35 (64) 0 20 (36) 4 (40) 0 6 (60) 1 (33.3) 0 2 (66.6) 1 (100) 0 0 28 (40.5) 0 41 (59.4)

CP 51 (93) 0 4 (7) 9 (90) 0 1 (10) 2 (66.6) 0 1 (33.3) 1 (100) 0 0 6 (9) 0 63 (91.3)

CRO 54 (98) 1 (2) 0 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 0 1 (2) 68 (98.5)

CZ 54 (98) 1 (2) 0 9 (90) 0 1 (10) 3 (100) 0 0 1 (100) 0 0 1 (2) 1 (2) 67 (97)

CC 39 (71) 0 16 (29) 7 (70) 0 3 (30) 1 (33.3) 0 2 (66.6) 1 (100) 0 0 21 (30) 0 48 (69.5)

IPM 55 (100) 0 0 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 0 0 69 (100)

RA 55 (100) 0 0 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 0 0 69 (100)

GMd 49 (89) 5 (9) 1 (2) 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 1 (2) 5 (9) 63 (91.3)

MUP 55 (100) 0 0 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 0 0 69 (100)

Ed 0 20 (36) 35 (64) 5 (50) 0 5 (50) 1 (33.3) 0 2 (66.6) 0 0 1 (100) 43 (62) 20 (36) 0

FOX 54 (98) 0 1 (2) nd nd nd nd nd nd nd nd nd 1 (2) 0 54 (98)

SXT 51 (93) 0 4 (7) 7 (70) 0 3 (30) 2 (66.6) 0 1 (33.3) 1 (100) 0 0 8 (11.6) 0 61 (88.4)

Kd 49 (89) 4 (7) 2 (3.6) 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 2 (3.6) 4 (7) 63 (91.3)

TOBd 47 (85.4) 2 (3.6) 6 (11) 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 6 (11) 2 (3.6) 61 (88.4)

AN 54 (98) 0 1 (2) 10 (100) 0 0 3 (100) 0 0 1 (100) 0 0 1 (2) 0 68 (98.5)

AZM 27 (49) 0 28 (51) 8 (80) 0 2 (20) 2 (66.6) 0 1 (33.3) 0 0 1 (100) 32 (46.4) 0 37 (54)

V 55 (100) 0 0 9 (90) 1 (10) 0 2 (66.6) 1 (33.3) 0 1 (100) 0 0 0 2 (3) 67 (97)

Note: Antibiotics: P, penicillin G; FOX, cefoxitin; E, erythromycin; MUP, mupirocin; TE, tetracycline; AMC, amoxiclav; TOB, tobramycin; K, kanamycin; CC, clindamycin; CZ, cefazolin; RA, rifampicin; GM, gentamicin; CRO, ceftriaxone; SXT,

trimethoprim sulfamethoxazole; CP, ciprofloxacin; AN, amikacin; AZM, azithromycin; V, vancomycin; IPM, imipenem; C, chloramphenicol.

CoPS, coagulase-positive Staphylococcus spp.; nd, not determined.
aSusceptible.
bIntermediate resistant.
cResistant.
dSusceptibility profile was determined using the agar dilution method.
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from Spain (75%), Germany (57.3%), and Portugal (78.7%) previously (Faria et al. 2009; Heß & Gallert 2014; Gómez et al.
2016). CoNS species was dominated by S. xylosus (37%) among 10 different types identified in our study, while S. sapro-
phyticus was reported as a dominant CoNS species type in wastewater in Europe (Faria et al. 2009; Heß & Gallert 2014).

S. saprophyticus has been associated with urinary tract infections in young women (Jordan et al. 1980). Other CoNS
species, with low frequencies, found in the current study were S. epidermidis, S. hominis, and S. haemolyticus, which
are common pathogens responsible for human and veterinary diseases (Nagase et al. 2002). Similar results were reported

Table 2 | Antibiotic susceptibility patterns of CoNS isolated from wastewaters using disk diffusion assay in Iran

Antibiotic

CoNS n¼ 86 n (%)

Sa Ib Rc

P 62 (72) 0 24 (28)

AMC 86 (100) 0 0

C 66 (77) 0 20 (23)

TE 44 (51) 0 42 (49)

CP 79 (92) 0 7 (8)

CRO 69 (80) 11 (13) 6 (7)

CZ 85 (99) 0 1 (1)

CC 60 (70) 3 (3) 23 (27)

IPM 86 (100) 0 0

RA 82 (95) 0 4 (5)

E 39 (45) 0 47 (55)

SXT 65 (75.6) 0 21 (24.4)

AZM 56 (65) 1 (1) 29 (34)

Note: Antibiotics: P, penicillin G; E, erythromycin; TE, tetracycline; AMC, amoxiclav; CC, clindamycin; CZ, cefazolin; RA, rifampicin; CRO, ceftriaxone; SXT, trimethoprim

sulfamethoxazole; CP, ciprofloxacin; AZM, azithromycin; IPM, imipenem; C, chloramphenicol; CoNS, coagulase-negative Staphylococcus spp.
aSusceptible.
bIntermediate resistant.
cResistant.

Figure 3 | Frequency distribution of macrolide and aminoglycoside resistance genes in Staphylococcus aureus isolates collected from
wastewater in Ardabil, northwestern Iran.
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around the world on the low occurrence of these species in wastewater. The prevalence was estimated to be �6.2% for S.
hominis and S. haemolyticus and 23% for S. epidermidis in wastewater (Faria et al. 2009; Heß & Gallert 2014; Gómez

et al. 2016).
CoNS are among the animals and human normal microbiota (Nagase et al. 2002) entering sewage through animal and

human excrements (Aarestrup 2001; Werckenthin et al. 2001; Heß & Gallert 2014). Therefore, the variation in the occur-

rence of CoNS in wastewaters may arise from the variation in the abundance of microorganisms in animal and human
host bodies at different regions.

In the present study, 44.5% of the isolates were characterized as CoPS, majorly belonging to S. aureus (80%). Most of the S.
aureus isolates (67%) were found in hospital wastewater. Our findings are in contrast with earlier studies indicating that S.
aureus is absent or less prevalent (0.4–20%) in wastewater (Schwartz et al. 2003; Volkmann et al. 2004; Shannon et al. 2007;
Faria et al. 2009; Börjesson et al. 2010; Heß & Gallert 2014; Moges et al. 2014; Gómez et al. 2016). Only 2% of isolates were
MRSA strains. Albeit the low occurrence of MRSA was reported in urban wastewater in Spain (Gómez et al. 2016) but most

of the studies showed higher occurrence of MRSA strains, as in Iran (15.3%), Australia (50–55%), USA (68%), and Sweden
(100%). Most of these studies have been on municipal and hospital wastewater (Börjesson et al. 2010; Goldstein et al. 2012;
Thompson et al. 2013; Rahimi & Bouzari 2015).

Similar to some other reports around the world (Igimi et al. 1990; Abraham et al. 2007; Faria et al. 2009; Sasaki et al. 2010;
Heß & Gallert 2014), S. intermedius (14.5%), S. hyicus (4.3%), and S. schleiferi subsp. coagulans (1.4%) were the other CoPS
species identified in wastewater samples in our study. Most of them were isolated from livestock and poultry wastewater. This

is in accordance with the fact that these species mainly colonize animal hosts and are responsible for infections such as pyo-
derma, otitis externa and genitourinary tract diseases in animals. However, they also cause opportunistic infections in
humans (Sasaki et al. 2007, 2010).

Unless clinics, the antibiotic resistance in aquatic environments was less studied (Sharma et al. 2016). Extensive usage of
antibiotics in hospitals, home therapy, veterinary and other areas hence continues the release of their residues into waste-
water develops drug-resistant organisms (Heß & Gallert 2014). MDR Staphylococci (S. aureus and CoNS) has been
detected in various environmental sources (Abulreesh 2011). In the present study, overall 50% of S. aureus isolates and

47% of CoNS isolates were MDR.
We found that S. aureus isolates were mostly penicillin resistance (89%). Similarly, penicillin resistance frequency was

reported as 100% in S. aureus isolates collected from poultry and municipal wastewaters in Iran (Rahimi & Bouzari 2015;

Rahimi & Karimi 2015). As well as the frequency of resistance against erythromycin, azithromycin and tetracycline were
high in S. aureus and CoNS isolated from wastewaters. This finding is in agreement with other studies all over the world
(Nawaz et al. 2000; Schwartz et al. 2003; Faria et al. 2009; Heß & Gallert 2014; Kumar et al. 2015).

Figure 4 | Frequency distribution of genes encoding virulence factors in Staphylococcus aureus isolates collected from wastewater in
Ardabil, northwestern Iran.
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Higher prevalence of macrolides, penicillin and tetracycline resistance among Staphylococci could be attributed to the

expanded utilization of these agents in human and outside human medicine. In a systematic review performed in 2021, it
was revealed that the median of antibiotic prescribing accounted for 45.25 and 68.2% of outpatient and inpatient settings
in Iran, respectively. β-lactams (e.g., penicillins, cephalosporins, and carbapenems) and macrolides were the most commonly

prescribed antibiotic classes (Nabovati et al. 2021). According to World Health Organization (WHO), about half of the world-
wide-produced antibiotics are sold for use by outside humans (World Health Organization 2002). Medically important
antibiotics were commonly used for the prophylactic purpose, growth promotion in food-producing animals and veterinary.
In line with the global trends, tetracycline, penicillin and macrolides are among the most common antibiotics used in live-

stock and poultry farms in Iran (Alipour et al. 2014). Widespread usage of tetracycline, penicillin and macrolides both in
humans and outside of human medicine could explain the high prevalence of resistance to these antibiotics in the current
study.

Erythromycin-resistant Staphylococcus spp. isolates may display cross-resistance to clindamycin. About 11% of S. aureus
isolates showed inducible clindamycin resistance in our study. Inducible resistance to clindamycin was reported as 19 and
32% in Germany and France, respectively (Lina et al. 1999; Heß & Gallert 2014). erm A, erm B, erm C, and erm TR

genes are involved in erythromycin resistance in S. aureus by expressing methylase enzyme (Heß & Gallert 2014). While
erm B gene is prominent in isolates from animal sources (Lina et al. 1999), erm C and erm A are dominant in clinical isolates
(Fiebelkorn et al. 2003; Gherardi et al. 2009). Similarly, the frequency of erm C gene was high in our study (82.5%) and may

be due to sources of our isolates mainly collected from hospital sewage. Also the erm B, erm TR, and msr A genes were found
in our S. aureus isolates. Another mechanism to develop erythromycin resistance is to express msrA, a drug efflux pump-
encoding gene (Heß & Gallert 2014). The msr A gene was found in nearly half of our isolates. It can be concluded that
drug efflux along erm genes causes erythromycin resistance in current S. aureus isolates.

Resistance to aminoglycoside antibiotics tobramycin, kanamycin and gentamycin were identified in 11, 4 and 2% of
S. aureus isolates, respectively. Aminoglycoside-resistant isolates carried aac (22.5%), ant (1%,) and aphc (10%) genes.
Some of the previous studies reported that aac gene has the highest frequency among other genes encoding aminoglycoside

resistance (Börjesson et al. 2010; Goldstein et al. 2012; Gómez et al. 2016).
Toxins play a vital role in the pathogenesis of staphylococcal infections. High variation in frequency of toxin encoding

genes in S. aureus has been documented worldwide (Shallcross et al. 2013; Bhowmik et al. 2021). Wastewater pathogenic

microbial population originates from human or animal excretions. Therefore, variations in the abundance of virulence
genes in wastewater isolates in different regions may arise from the differences in virulence traits of the normal flora of
the hosts. This can be approved by the fact that the pattern of virulence genes among our isolates is similar to the previous
isolates collected in Ardabil from patients (unpublished data) and healthy people (Omid et al. 2021). It is clear that changing
the sampling places can lead to differences in the virulence genes frequency.

In this study, the most prominent toxin genes were α-hemolysin encoding, hld (96%) and hla (94.5%) in S. aureus isolates.
According to results reported by some previous studies, the hla and hld gene prevalence is 70–98% in Staphylococci isolates
in clinical and non-clinical settings (Sharma-Kuinkel et al. 2015; Rossato 2018; Verdú-Expósito et al. 2020; Zieliński et al.
2020). α-hemolysin damages host cells by creating channels and disrupting the membrane (Tang et al. 2019). This toxin affects
innate immune cells, disrupts epithelial and endothelial barriers, and stimulates a hyperinflammatory response following sta-

phylococcal pneumonia (Tabor et al. 2016).
Several enterotoxins are responsible for food poisoning by S. aureus. Type A enterotoxin is the most common cause of food

poisoning in humans (Argudín et al. 2010). In this study, sea, encoding type A staphylococcal enterotoxin was the predomi-

nant gene (87%) followed by sec (47%) encoding type C, sed (14.5%) encoding type D and seb (5.4%) encoding and B
enterotoxins.

Toxic shock syndrome (TSS) is a deadly staphylococcal disease typically caused by the toxic shock syndrome toxin 1
(TSST-1) encoded by the tst gene (Parrish et al. 2019). We found tst gene in 84% of S. aureus isolates which is higher

than other reports ranging 2–28.5% (Robert et al. 2011; Zieliński et al. 2020; Bhowmik et al. 2021).
The exfoliative toxins (encoded by eta and etb) cause the staphylococcal scaled-skin syndrome (SSSS). eta gene was carried

by 33% of S. aureus isolates, while we could not detect etb gene. Previous studies have shown a higher prevalence (34–61%)

of both of these genes in clinical and colonizing S. aureus isolates (Shukla et al. 2010; Champion et al. 2014).
Another studied gene was pvl encoding a two components toxin named Panton-Valentine leukocidin (PVL). PVL damages

leukocytes membrane by creating pores. pvl was detected in 31% of isolates which locates in the range of earlier reported
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values (4.4–100%) (Shukla et al. 2010; Alfatemi et al. 2014; Papadimitriou-Olivgeris et al. 2017; Wang et al. 2017; Darboe

et al. 2019; Veloso et al. 2019).
In the present study, eight isolates of S. aureus were assessed by spa typing approach in which six various types were ident-

ified including t346, t026, t14870, t937, t17068, and a new type t19215. Among them just t19215 belongs to MRSA strain. This

finding is in agreement with our previous investigation on spa types in isolates from healthy people (Omid et al. 2021). Sur-
veys on S. aureus isolates from wastewater in Spain and United States (Sauer et al. 2008; Friese et al. 2013) identified 15 spa
types and just type t346 was identical to our result.

5. CONCLUSION

In the current study, multiple CoNS and CoPS species with veterinary and clinical significance were identified in the sewages
from different sources. The most common CoPS and CoNS species were S. aureus and S. xylosus, respectively. A significant
portion of both CoNS and CoPS isolates were resistant to multiple antibiotics. S. aureus isolates carried multiple virulence-

encoding genes. The occurrence of these superbugs in wastewater is of great health concern indicating the importance of
water treatment to eliminate antibiotic-resistant bacteria. We suggest using chemicals with high antimicrobial activity in
wastewater processing in order to remove antibiotic-resistant bacteria and antibiotic resistance-encoding genes efficiently.
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