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Abstract
The chlorination of surface waters leads to the formation of thrihalomethans (THMs) and haloaceticacids (HAAs) due to 
the presence of natural organic matters. Thus, the removal of fulvic acid (FA) as one of the most prominent natural organic 
matters in water is necessary. Therefore, this study was aimed to evaluate the efficiency of catalytic ozonation of FA in the 
presence of the local montmorillonite (Mnt). The soils were collected from the Ardabil Sarcham area and used as a catalyst, 
after the required preparation. The variables in this study including initial solution pH, catalyst dosage, reaction time, and 
initial pollutant concentration were examined. For the ozonation of the samples, an ozone generator with a capacity of 5 g/h 
was used. It was found that, with increasing contact time, pH, and catalysts dosage, as well as decreasing initial FA con-
centration, the performance of the catalytic ozonation process increased significantly. The results demonstrated that radical 
scavengers like nitrate, chloride, sulfate, and carbonate a high concentration had very low effect on the efficiency of this 
process compared to conventional ozonation. The kinetic data was found to fit into the pseudo-first-order kinetic model (R2 
= 0.98) than the zero and pseudo-second-order model. The Green Mnt was more effectual than the Red Mnt at pH: pH = 7, 
FA concentration = 25 mg/L, time = 30 min, catalyst dosage = 1.25 g/L, inlet ozone concentration = 2.2 mg/L-min; which 
gave COD removals of 84.68 and 78.25%, respectively. As a whole, green and red soils increase highly the efficiency of FA 
removal in the catalytic ozonation process, because of low costs and availability of these soils.
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1  Introduction

Natural organic matters (NOMs) are divided into two cat-
egories, one of which is autochthonous natural organic mat-
ters created by microorganisms, coarse macromolecules in 
water and carbon fixation by water plants and algae. The 
second class is allochthonous natural organic matters result-
ing from the disintegration of plant and animal residuals 
in the water, which actually refers to humic substances [1, 
2]. However, the exact chemical structure of humic sub-
stances is unknown. These substances in surface waters are 
mainly divided into two classes: fulvic acids with a molecu-
lar weight of 2000–5000 gr/mole, and FA with a molecular 
weight of 500–2000 g/mole [3, 4]. Chlorination of waters 
containing NOMs causes the creation of disinfection by-
products (DBPs) including trihalomethanes (THMs) and 
haloacetic acids (HAAs) [5]. In recent years, much attention 
has been paid to health risks potential of these compounds 
[6]. It should be pointed that conventional water treatment 
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processes are only able to remove 10–30% of NOMs. Since 
removal of THMs and HAAs is more expensive, thus, the 
selection of a method having high efficiency in removing 
the precursor of THMs and HAAs is fully necessary [7]. 
Accordingly, various methods such as coagulation process, 
adsorption, ion exchange, and advanced oxidation processes 
(AOPs) have been utilized to remove humic substances [8]. 
The high performance of AOPs can be regarded as a major 
advantage [9–11]. Ozone is known as a strong oxidizing 
agent through direct reaction of the molecular ozone or 
indirectly reactions of hydroxyl radicals that are produced 
by ozone decomposition [12]. However, there are many 
obstacles to using the simple ozonation process in indus-
trial scale including high installation and operation costs 
and weak ozone mass transfer rate [13]. Fortunately, the 
catalytic ozonation process (COP) raises the mineraliza-
tion power of ozone by converting ozone molecules to more 
active forms leading to the higher efficiency and economic 
feasibility than the simple ozonation process [14]. The COP 
process has successfully been used for the decomposition 
of organic matters such as aromatic hydrocarbons, pharma-
ceuticals, pesticides, dyes and organic acids [15, 16]. Many 
materials like active carbon, Al2O3, TiO2 have been applied 
as a catalyst in COP [17–20]. Also, the application of bone 
char in COP leads to an increase in the speed of the FA 
decomposition [21]. Hence, the performance of ozonation 
processes in the decomposition of NOMs can be enhanced 
dramatically through catalysts. However, few catalysts have 
been assessed in this regard. Thus, it is essential that afford-
able and accessible catalysts be investigated [19]. Therefore, 
this research provided an opportunity for further study on 
alternative catalysts in COP. In this study, green and red 
local soils were evaluated as a catalyst in catalytic ozona-
tion for the degradation of FA in synthetic water solutions.

2 � Materials and methods

2.1 � Reagents, materials, and solutions

FA was provided from Sigma–Aldrich (OH, USA). Other 
chemicals used in this study were of analytical grade and 
obtained from Merck Company (Darmstadt, Germany). 
Green and red soils were collected from the Ardabil Sar-
cham area (Ardabil, Iran).

2.2 � Preparation of catalyst

In the present study, we used a green local montmorillonite 
collected from Sarcham Region in Ardabil, Iran. They were 
first washed several times with deionized water to remove 
color and impurities. Then, they were dried at 60 °C for 24 
h. Afterwards, the soil granules were sieved through 100 

mesh and kept in a special repository away from moisture 
for further use.

2.3 � Characterization of catalyst

Different analytical techniques were used to determine the 
properties of the prepared catalyst. N2 adsorption for deter-
mining the specific surface areas (Brunauer–Emmett–Teller) 
and pore volumes. Chemical compounds of catalyst were 
performed by using X-ray spectroscopy (XRF) (Philips-
Magix Pro., Philips Electronics Co., Netherlands). Finally, 
for characterization of the functional groups on the surface 
of the samples using Fourier transform infrared spectros-
copy (FT-IR) (PerkinElmer, USA) under a dry air at room 
temperature by the KBr pellets method. The infrared spectra 
were measured within a range of 450–4000 cm−1.

2.4 � Determination of point of zero charge (pHzpc)

The determination of pHzpc of the samples was carried out as 
follows: initial pH a value of 50 mL of 0.1 M NaCl was used 
as an electrolyte; the pH was adjusted to a value between 2 
and 12 by adding 0.1 M NaOH and/or H2SO4. Then, 0.1 g 
of sample added into each solution and has been shaken for 
48 h under agitation at room temperature. After this period 
of agitation, the adsorbent was filtered and the final pH of 
the solution (pHf) was also determined. At the final step, the 
value of pHzpc of adsorbent was found from the intersection 
of the curve of the initial pH and the final pH [22, 23].

2.5 � Experimental procedure and analysis

Ozonation was done in a batch glass reactor with 0.2 × 0.2 
× 0.3 meter dimensions; Fig. 1 shows a schematic diagram 
of the reactor. First, the reactor was filled with 7-liters sam-
ple, and then the ozonation was performed after providing the 
requirement variables. An ozone generator (ARDA-MOG) 
with 5 g/h capacity was used to produce ozone. A 20-L high 

Fig. 1   Schematic of the ozonation pilot
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purity oxygen tank was applied as the fed source for the ozone 
generator. The concentration of injected ozone was measured 
according to the 2350−E procedure explained in the Stand-
ard method [24]. All of the experiments were performed at 
mixing rate of 300 rpm and room temperature. To determine 
the effect of initial pH on the efficiency of the process, the 
examination was continued by adding 0.5 g/L of the cata-
lysts at the pH of 2–4–6–8–11. And, other trials were done 
at the natural water pH range (pH = 7). In order to deter-
mine the optimal dose of the catalyst, the concentrations of 
0.25–0.5–0.75–1–1.25–1.5 and 2 g/L were added to the sam-
ples for 30 min. To observe the effects of initial concentration 
and time in the performance of the COP, FA in the concentra-
tion of 5–10–25–50–100 mg/L was prepared. In this study, the 
time periods of 5–10–15–20–25–30 minutes were tested at the 
optimal amount of the catalyst and the removal efficiencies 
were measured. Also, to ensure repeatable results, every step 
of the experiments was repeated twice, and the average results 
were reported. The colorimetric method at 254 nm wavelength 
by means of a Perkin Elmer-25 lambda spectrophotometer 
was used to measure FA content. Before the quantification 
of residual FA, the samples were centrifuged at 10000 rpm 
speed. The percentage of FA removal rates was calculated by 
Eq. (1) [25–27].

Where C0 and Ce are the initial and final concentrations in 
mg/L, respectively.

Kinetics studies are consequential key-factor for determina-
tion of the order and rate constant which is so significant for 
designing an adsorption process. For kinetics studies, 1.25 g/L 
of the catalyst was contacted with 1000 mL of FA solutions 
with the initial concentration of 25 mg/L of FA.

3 � Results and discussion

3.1 � Catalyst characterization

3.1.1 � XRF analysis

According to the X-ray f luorescence (XRF) results 
(Table 1), the chemical composition of green and red soils 
included silica, magnesium, aluminum, sodium, calcium, 
titanium and potassium. Researchers have clarified the 
role of these metals in the conversion of ozone into active 

(1)Removal Percentage (%) =
C
0
− C

e

C
0

× 100

radicals [8]. Active sites on these metals are important in 
decomposition of ozone; they also play a role in the forma-
tion of functional groups on the surface of the soils. When 
the soils are added to water, these metals are covered with 
water molecules that are being decomposed and this then 
leads to the formation of metallic functional groups on the 
surface of catalysts.

3.1.2 � FTIR analysis

The FTIR results in 400–4000 cm−1 indicated the pres-
ence of active functional groups on the surfaces of the 
catalyst (Fig. 2). The existences of these functional groups 
cause the catalyst to act as a Lewis acid-base and convert 
ozone into active radicals. It is worth noting that soils’ 
functional groups including carboxylic acid groups, ethers, 
esters, aldehydes, ketones, amines, and hydroxyl are main 
factors in the conversion of ozone to more active forms 
[28]. Some researchers believe only the surface neutral 
hydroxyl functional groups have a high catalytic activity 
and expedite the decomposition of ozone and production 
of hydroxyl radicals [29]. Yuan et al. reported that, in the 
presence of a catalyst, the production of hydroxyl radicals 
increased significantly. Also, they stated that hydroxyl 
functional groups have the main cause in the catalytic 
decomposition of ozone [30].

Table 1   XRF results of green 
and red soils

Metal oxides SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O TiO2

Green Mnt(Wt%) 56.9 13.5 9.7 9.6 2.6 2.1 1.6 1.3
Red Mnt(Wt%) 58.3 17.7 2.8 11 1.4 3.9 1.2 1.4
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Fig. 2   FTIR analysis of green and red Mnt
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3.1.3 � BET analysis

BET analysis based on the measurement of absorbed and 
desorbed nitrogen gas by the substance surface at the con-
stant temperature of liquid nitrogen (77 K) to calculate the 
volume of pores and area of surface. Table 2 shows the nitro-
gen adsorption/desorption isotherms of the green and red 
soil. By comparing Table 2 can be found that the porosity 
of the green soil is more than red soil. The area of specific 
surface of green and red soil is respectively calculated 13.02 
and 2.88 m2/g. Also, the total volume pores in green and red 
soil has respectively been 7.38 and 6.9 cm3/g and is indica-
tor the amount of volume of pores in composite. The BET 
results show that the special area of the green soil was higher 
than that of the red soil; also, the green soil had extended 
area for the decomposition of ozone to active species. This 
illustrated that the green soil had a better performance than 
the red soil.

3.2 � Effect of initial pH on the performance of COP 
process

The pHzpc is another important parameter when a catalyst 
is applied. This characteristic shows the properties of cata-
lyst surface [31, 32]. The pHzpc values of red and green soils 
were obtained 7.4 and 6.4, respectively (Fig. 3). The pHzpc is 

important for the perception and evaluation of catalytic ozo-
nation mechanism; when pH is higher than pHzpc, the func-
tional groups are deprotonated (Eq. 1) and, in the pH level 
lower than pHzpc, the surface functional groups are protonated 
(Eq. 2) [33].

Deprotonating and protonation of functional groups cause 
catalysts to act as a Lewis acid-base and this phenomenon 
plays a basic role in the performance of soil used as a catalyst 
[34, 35]. Therefore, based on the results of this study and other 
related studies, it can be concluded that these properties must 
be examined separately, due to the importance of the chemi-
cal properties of the catalyst [19]. The results show that FA 
removal increased with raising initial pH values in both simple 
and catalytic ozonation processes (Fig. 3). In the simple ozona-
tion process, due to the initial pH, ozone reacts with pollut-
ants through two different ways, direct oxidation, which is a 
major factor in the decomposition of FA in acidic conditions 
and indirect oxidation, in which hydroxyl radicals are major 
oxidizing agents, in alkaline conditions. With increasing the 
pH value, the number of generated radicals increased, lead-
ing to further degradation of FA [36]. It was found that in the 
catalytic ozonation process, the removal efficiency of FA at 
all pH values was higher than that of the conventional ozona-
tion process. In acidic conditions, ozone is absorbed on soil 
surface. The following equations show absorbing compounds 
react with absorbed ozone [37].

(1)OH− + S − OH ↔ S − O− + H
2
O

(2)S − OH + H+
↔ SOH+

2

(1)TOC
1
+ soil ↔ TOC

1
− soil

Table 2   BET characteristics of green and red soils

Characteristics Green soil Red soil

Specific area(m2/gr) 13.02 2.88
Mean pore diameter 22.7 9.57
Total pore volume(cm3/gr) 7.38 6.9
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Fig. 3   Effect of initial pH on SOP and COP processes (inlet ozone concentration = 2.2 mg/L-min, catalysts dosage = 0.5 g/L) (a) and pHzpc (b)
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Where TOC1 indicates total organic carbon that is 
adsorbed on the surface of soil and TOC2 represents 
oxidized organic carbon. Hydrogen peroxide is formed 
through the decomposition of ozone on the surface of soil. 
But the effect of the generated hydrogen peroxide in this 
way is low in the efficiency of the process. The reaction 
of adsorbed ozone on the surface with hydrogen peroxide 
leads to the formation of radicals species [17].

suspended organic compounds react with the produced 
radicals via the following equation [38].

The formation of hydrogen peroxide in the reaction 
of ozone with the catalyst was reported by Alvarez et al. 
[39]. The chemical adsorption of ozone on the catalyst 
surface results in the formation of activated radicals react-
ing with suspended Fulvic acids [1]. Also, FA is removed 
through the direct reaction of molecular ozone and FA 
is chemically absorbed on the surface of the catalyst and 
then it reacts with molecular ozone. Therefore, in acidic 
conditions, the absorption of ozone and FA molecules in 
the same time on the catalyst surface and their reactions 
lead to FA removal, thereby enhancing catalytic ozona-
tion compared to the conventional ozonation at the same 
situations [7, 40]. Faria et al. surveyed the performance 
of activated carbon as a catalyst in the removal of oxalic 
acids and oxamic acid; they reported that reactions that 
take place on the surface of the activated carbon in acidic 
conditions are the main factor increasing the performance 
of the catalytic ozonation [16].

Researchers have claimed that the dissociation of func-
tional groups occurs at pH values higher than pHzpc; thus, 
the nucleophile properties of functional groups increase. 
Under these conditions, the dissociated functional groups 
on the surface of the catalyst tends to increase the reac-
tion rate of ozone [41]. The loss of these electrons causes 
them to transfer to ozone molecules and promote ozone 
decomposition to very active radicals on the catalyst sur-
face. Eventually, this electron transfer leads to the forma-
tion of ozonized anions, and this cycle of radical reactions 
continues [42]. In fact, an increase in pH and subsequent 
reactions on the catalyst surface has a synergistic effect 
on FA removal [43]. With raising pH, the concentration 

(2)O
3
+ soil ↔ O

3
− soil

(3)TOC
1
− soil + O

3
− soil → TOC

2
+ H

2
O

2

(4)H
2
O

2
+ soil ↔ H

2
O

2
− soil

(5)H
2
O

2
+ soil + soil + O

3
→ OH

◦

+ soil

(6)TOC
1
+ OH

◦

→ TOC
2
+ HO

◦

2

of hydroxyl ions in the liquid phase increased. These ions 
trigger a reaction of ozone decomposition into radical 
agents.

3.3 � Catalyst dosage

In order to evaluate the effect of catalysts dosage on the 
removal of FA, the catalyst was added to the sample in doses 
between 0.25 and 2 g/L. The results showed that, with increas-
ing the dose of the red and green soil, the removal rates went 
up from 35.12 to 79.26% and 48.89 to 84.89%, respectively 
(Fig. 4). As can be seen in Fig. 4, increasing catalyst dosage 
more than 1.25 g/L a significant change did not happen. There-
fore, the optimized dose in the COP process was 1.25 g/L.

One of main parameters in the designing of COP process 
is minimum required catalyst dose as an initiator or promoter 
of ozone decomposition reactions [19]. The following reac-
tions happen in the presence of ozone and soil, which can be 
a cause for the high efficiency in the presence of green and 
red soil. In this reactions, soils act as an initiator for radical 
production and absorption of ozone on the soil surface lead-
ing to ozone destruction and active radicals production [9]. In 
other words, the Lewis acid site reacts with ozone and produce 
oxygen radicals. Also, in the presence of water, the oxygen 
radicals produce hydroxyl radicals and increase the process 
efficiency [44].

(1)O
3
+ (Mnt − s) →

(

Mnt − SO3

)

(2)
(

Mnt − SO3

)

→

(

Mnt − SO
◦
)

+ O
2
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Fig. 4   Effect of catalyst dosage (pH = 7, inlet ozone concentration = 
2.2 mg/L-min)
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-S index indicates the Lewis acid on the surface of 
montmorillonite.

With a further increase in the catalyst dosage since 1.25 
to 2 g/L, a significant improvement in the efficiency of the 
process was not observed. Therefore, a small amount of the 
catalyst was sufficient to catalyze and increase FA decom-
position. Thus, in the catalytic ozonation process, the opti-
mum catalyst dosage depends on the catalyst type, target 
compound, and the reaction conditions [45].

3.4 � Effect of contact time and initial FA 
concentration

According to the results (Fig. 5), the removal efficiency of 
FA significantly decreased with increasing initial soil con-
centration, which can be compensated with increasing in 
inlet ozone injection [46]. Contact time is the time required 
to achieve the desired goals in a purification process and it 
is one of the most important designing and operating param-
eters in oxidation processes. High contact time means higher 
construction costs [47]. It was found that, with increasing 
retention time, the removal efficiency of FA increased. Inter-
estingly, less reaction time is required in the case of catalytic 
ozonation in compared with conventional ozonation, thereby 
reducing the required reaction time; this is possibly due to 
the production of oxygen and hydroxyl radicals caused by 
the presence of the catalyst and molecular ozone resulting 

(3)

(

Mnt − SO
◦
)

+ 2H
2
O + O

3
→

(

Mnt − SOH
◦
)

+ 3OH
◦

+ O
2

in further power and decomposition speed in the catalytic 
ozonation process [48].

3.5 � Kinetic study

To investigate the kinetic of FA disintegration using catalytic 
ozonation process, zero order, pseudo-first order and pseudo- 
second order kinetics, of different organic compounds, espe-
cially FA, were studied. The test was applied in optimum 
conditions to study the disintegration synthetic (dose 1.25 
g/L, pH = 7, and concentration of 25 mg/L). The reduction 
of FA concentration was observed as a function of irradia-
tion time and data were fitted to a first order rate [49, 50]. 
The amount of fixing coefficient for regression line is 0.98; 
hence, FA deleting reaction of pseudo-first-order model fol-
lows it (Table 3 and Fig. 6). Pseudo-first-order reactions are 
reactions in which the reaction rate is only a function of the 
concentration of a substance. The correlation between Ln C/
C0 and the reaction time was linear. The kinetic expression 
can be presented as follows Eqs. [51].

Ln C∕C0 = −k t
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Fig. 5   Effect of initial soil concentration on removal efficiency of catalytic ozonation process (pH = 7, catalyst dosage = 1.25 g/L, inlet ozone 
concentration = 2.2 mg/L-min)

Table 3   Kinetics for the FA degradation process

K (min−1) R2

Zero 0.0236 0.957
Pseudo first order 0.049 0.98
Pseudo second order 0.1564 0.92
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Where C is the FA concentration at instant t, C0 is the 
initial FA concentration, k is the rate constant, and t is the 
time of reaction. The identification between the models’ cal-
culated values and the experimental data is expressed by R2. 
A study by Feng et al. on the catalytic ozonation of humic 
acid in water with modified activated carbon showed that the 
kinetics removal of humic acid reaction was a pseudo-first 
order [52].

3.6 � Effect of confounding factors in the catalytic 
ozonation process

One of the major problems in advanced oxidation processes 
(AOPs) is confounding factors impacting the reactions. 
Some of these factors or radical scavengers are sulfate, car-
bonate, chloride, and nitrates. They are drastically present 
in natural waters and, in turn, reduce the efficiency of AOPs 
[53]. It was found that in the case of conventional ozona-
tion process, in the presence of 300 mg/L of carbonate and 
sulfate, the removal efficiency of FA decreased to 51.2 and 

48%, respectively. In contrast, in the case the COP, by means 
of the green and red soils in the presence of the same content 
of carbonate and sulfate, the removal efficiency declined to 
just 5–3.8% and 5.8–4.1% respectively (Table 4). At pH val-
ues higher than pHzpc, active Lewis sites react with ozone, 
because these reactions happening on the catalyst surface are 
less affected by radical scavengers, as mentioned previously 
[39]. The ozone decomposition declined in the presence of 
strong Lewis bases such as carbonate, sulfates, chloride, and 
nitrate that are generally present in natural waters. These 
ingredients compete with ozone to react with strong Lewis 
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Fig. 6   Zero order (a), pseudo-first-order plot (b), and pseudo-second-order plot (c) for FA degradation by catalytic ozonation process

Table 4   Effect of confounding factors in the catalytic ozonation pro-
cess

Carbonate (mg/L) Sulfate (mg/L)

SOP 51.2 48
COP (green soil) 5 3.8
COP (red soil) 5.8 4.1
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sites where ozone decomposition takes place [54]. How-
ever, because of the resonance structure of ozone and hav-
ing high electron density on the one of its oxygen atoms, it 
has a strong tendency to react with Lewis acid sites on the 
surface of the catalysts compared with water compounds. 
This property of ozone causes decomposition of ozone that 
is less affected by radical scavengers [21]. Of course, one 
reason for the negligible impact of radical scavengers in the 
catalytic ozonation process may be owing to the production 
of non-hydroxyl radicals that these do not react with radical 
scavengers [55]. Khutina et al. in 2015 investigated the pro-
duction of hydroxyl radicals from ozone and reported that 
the main inhibiting factors for hydroxyl radical production 
are carbonate and bicarbonate [56].

Carbonate prevents the chain reactions of ozone decom-
position. At the alkaline pH, carbonate not only is a scav-
enger but also prevents the ozone breakdown to hydroxyl 
radicals. Thus, the presence of carbonate reduces ozone 
decomposition speed. Several investigators have shown that 
ozonation in the presence of radical scavengers is stopped 
or results in a great decrease in removal efficiency , while, 
under the same conditions, the catalytic process is less 
affected by these factors [18]. Although the experimental 
conditions in this study were different, the results showed 
that the findings obtained corresponded with those docu-
mented by other studies. Thus, according to the results, since 
the heterogenic catalytic ozonation process was less affected 
by the scavengers, this process can be used as an alternative 
to conventional methods.

3.7 � COD changes in catalytic ozonation process 
simple

The results (Fig. 7) demonstrated that COD removal was 
slight compared with FA removal. The main reason for this 
phenomenon is that over FA ozonation the interfering com-
pounds can be formed, which result in an increase in COD 
concentration [57]. For example, Sano et al. investigated the 
phenol removal and observed that COD removal was slower 
than phenol removal, and interfering compounds lead to an 
increase in COD throughput [58].

4 � Conclusion

The results of this study indicated that using green and 
red soils dramatically increased the removal efficiency 
of FA; the findings revealed that, despite the presence of 

(1)HCO−
3
+ OH

◦

→ H
2
O + CO−◦

3

(2)CO2−
3

+ OH
◦

→ OH− + CO−◦

3 confounding factors and radical scavengers, which lead to 
a sharp decline in the efficiency of conventional ozonation 
processes, the presence of these agents in high concentra-
tions had much smaller impact on the catalytic ozonation 
process when the soils were added. It was also observed 
that the COP process had a high performance in natural 
pH. Therefore, it can be concluded that green and red soils 
can be used as a catalyst for the catalytic ozonation of FA 
and other organic compounds, owing to advantages as fol-
lows: cost-effectiveness and high efficiency. Of course, the 
removal efficiency for other groups of organic compounds 
may result in different observations. Therefore, further eval-
uation is required to confirm the result of this manuscript for 
other pollutants. The results demonstrated that COD removal 
was slight compared with FA removal. The main reason for 
this phenomenon is that over FA ozonation the interfering 
compounds can be formed, which result in an increase in 
COD concentration. The Green Mnt was more effectual than 
the Red Mnt at pH: pH = 7, FA concentration = 25 mg/L, 
time = 30 min, catalyst dosage = 1.25 g/L, inlet ozone con-
centration = 2.2 mg/L-min; which gave COD removals of 
84.68 and 78.25%, respectively. The area of specific surface 
of green and red soil is respectively calculated 13.02 and 
2.88 m2/g. The kinetic data was found to follow the pseudo-
first-order kinetic model. It should be pointed that it is nec-
essary to study well the use of these catalysts in large-scale 
applications.
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