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Azo dyes are important groups of chromospheres having a particular structure in color-contaminated 

wastewater. In the present study, Reactive Red 198 (RR198) dye was chosen as a model of azo dyes 

group. Electrocoagulation technique as an effective and environmental-friendly process for wastewater 

treatment was applied. Hence; to determine the extent of decolorization process, the main different 

parameters such as pH (4-11), contact time (80 min), initial concentrations (25-400 mg/L), current 

density (1.9-23.1 mA/cm
2
), distance between gaps (1-4 cm), and effect of supporting electrolytes were 

evaluated. Results show that optimum conditions were 20 min of operation time, 1 cm distance 

between electrodes, pH equal to 4 and optimum initial concentration of dye equal to 100 mg/L as well 

as NaCl was identified as the best electrolyte. Under these optimum conditions and also at both 

aeration and non-aeration operating conditions decolorization efficiency was more than 90%. The 

results also demonstrated that total organic carbon removal efficiency as (TOC), during 120 min of 

contact time was about 80.95%. XRF analyses show that a large portion of deposited sludge (58.282%) 

was aluminum oxide. 

 

 

Keywords: Aluminum electrode; Electrochemical decolorization; Reactive Red 198, aqueous 

solutions  

 

 

 

 

http://www.electrochemsci.org/
mailto:b_barikbin@yahoo.com


Int. J. Electrochem. Sci., Vol. 12, 2017 

  

4746 

1. INTRODUCTION 

Due to environmental concerns and other serious problems such as being toxic to aquatic life, 

and leading to carcinogenic and mutagenic effects on humans, today, complex structures of textile 

dyes, dyeing, printing, ink and color based industries are taken into serious consideration [1-3]. Based 

on chromospheres’ characteristics of dyes, azo dyes are one of the main important groups of chemical 

compounds and compose the largest class (around 70%) [4]. Indeed, azo dyes form a very complex 

and biorecalcitrant class of synthetic compounds by binding to aromatic rings of azo group(s) [5-7]. 

For these reasons, the Reactive Red 198 (RR 198) was selected as a model of azo dyes group. 

There are many applied techniques for the treating of color-contaminated wastewater, such as: 

adsorption, oxidation (using chlorine, ozonation and AOP), and biological process (anaerobic–aerobic) 

[1, 8-10]. Recently, electrochemical technique (for example: electrocoagulation, microbial electrolysis 

cell, microbial fuel cell, and etc.) as an effective and environment-friendly process for wastewater 

treatment has been employed by many researchers [11-13]. This alternative ensures good quality 

effluent before its disposal into aquatic environment [14]. In addition, the EC process is a suitable 

potential way for the treatment of wastewater regarding the cost and the environment [15]. 

Contaminant removal with electrochemical methods offers several advantages, such as having no need 

of chemical requirements, not producing any sludge, occupying a small area in plants and simple 

operation [16]. In fact, the coagulant is generated by means of the dissolution of a sacrificial anode for 

the EC process. This process can be very effective for oil removal from synthetic oily wastes, textile 

dyes, suspended solids (as well as oil and greases), metal ions, and petroleum wastewaters [14, 17-23]. 

Expected chemical reactions, which occur near the electrodes and during the aqueous phase, are shown 

as the following [24]: 

Near the anode surface: 

In acidic pH        g22 OO2He44OH 
                                                                (1) 

In alkaline pH        
 4HOe4-O2H g22                                                                (2) 

   
 3

aqS Ale3Al
                                                                                                         

(3) 

      3HOHAlO3HAl 32

3

aq                                                                                   (4) 

Near the cathode surface: 

In acidic pH         O2HHe2O2H 2g22 
                                                           (5) 

In alkaline pH        
 2OHHe2O2H g22                                                              (6) 

 
 2OHHe2O2H g22                                                                                            

(7) 

 4OHe4O2HO 22                                                                                                 (8)  

    e3Al(OH)4OHAl 4S 


                                                                                  
(9) 

In the present research, decolorization of Reactive Red 198 by means of electrochemical 

method using the mono-polar arrangement of aluminum electrodes was evaluated. Finally, in order to 

evaluate the kinetic reaction dye decolorization, pseudo-first and second order model were used. 

 

 



Int. J. Electrochem. Sci., Vol. 12, 2017 

  

4747 

2. MATERIALS AND METHODS 

2.1 Materials 

Dye solutions were prepared by dissolving RR198 in distilled water.  

The structure and characteristics of RR 198 such as CAS number, formula and molecular 

structure are presented in table1. All reagents in analytical grade including NaCl, KCl, KNO3, NaOH, 

HCl, Na2CO3, H2SO4 were prepared by Merck and Sigma Company. Normal pH was adjusted to the 

desired value by using 1 M HCl and 1 M NaOH. The NaCl, KCl and KNO3 solutions at 1g/L (0.1%) 

were prepared as supportive electrolytes. 

 

Table 1. Reactive Red 198 characteristics 

 

CAS Number 145017-98-7 

Super list Name Reactive Red 198 

Formula C27H22 Cl N7 O16 S5. 4 Na 

Molecular 

Weight 

968.21 

Molecular 

Structure 

 
 

2.2 Analysis 

In order to separate the formed flocs, all collected samples were filtered and their respective pH 

was measured using a pH meter (Eutech) and then registered as final pH.. The decolorization and 

removal rate of the RR 198 in the solution samples were analyzed by measuring the light absorbance 

of each sample at the wavelength of 518 nm using a UV/Vis T+80 spectrophotometer and TOC 

analyzer, respectively [25]. The XRF and also Scanning Electron Microscope (SEM) image were done 

by KYKY-EM3200 from a portion of electrocoagulation sludge. All experiments were duplicated and 

the average obtained result was recorded. Besides, all the experiments were performed at room 

temperature. 

 

2.3 Reactor Set-up 

Decolorization cell includes of a glass vessel as the laboratory reactor (250 
cc

), a DC Power 

Supply (TEK-8051, 30 V and 5 A double), and a peristaltic pump (Watson Marlow 101U/R) equipped 
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with aeration tubes. During this study, we used from two electrodes in mono-polar state as Al/Al 

arrangement. Dimensions of Aluminum plates were equal to (65×20×2 mm)in all experiments. At the 

beginning of any run of electrocoagulation process, anode and cathode plates  were cleaned using 0.1 

M H2SO4 and then eliminate impurities by Rinse several times using distilled water. At the end of 

any run, all samples were filtered by means of Whatman filter and their absorbance was detected. 

 

3. RESULTS AND DISCUSSION  

3.1 Effect of pH 

The pH as a significant parameter can be influenced by electro-coagulation process and have a 

principle role in the contaminant degradation mechanism during an oxidation process [4, 26]. Removal 

efficiency with 5% error bar at certain conditions under different pH values for the decolorization of 

Reactive Red 198 is shown in Fig 1. Removal efficiency and EC were determined at the end of 30 min 

under various pH values (4-11). With regard to the results, maximum removal was obtained about 

92.34% at acidic pH (pH=4). Although at the acidic phase higher rates of decolorization were seen, the 

neutral pH was suitable. Due to alkaline pH, lower decolorization efficiency of about 54.63% was 

obtained. According to aluminum reactions on anode, the cationic (Al
3+

 and Al(OH)2
+
), monomeric 

units (such as Al(OH)
2+

, Al(OH)2
2+

, Al2(OH)2
4+

, and Al(OH)4
-
) and polymeric species(such as 

Al6(OH)15
3+

, Al7(OH)17
4+

, Al8-(OH)20
4+

, Al13O4(OH)24
7+

, and Al13(OH)34
5+

) at lower pH values (<6 ) 

are generated, and in this range there are two dominant mechanisms of precipitation and adsorption. 

At pH values below 6, precipitation is expected; and at higher pH values (> 6.5) the adsorption 

mechanism can be observed which occurred by amorphous aluminum hydroxide (Al(OH)3) formation 

[19, 27]. However, generally the precipitation is a significant mechanism for higher decolorization 

efficiency at neutral and acidic pH. The loss of decolorization efficiency in alkaline pH (especially 

above 9) is considered to be due to the diminishment of flocks quantity, caused by consuming OH
-
 and 

amorphous spices for the formation of Al(OH)4
-
and buffering capacity [19]. Inan et al. (2004) stated 

the fall of efficiency at high pH values caused by the formation of hydrosol-complexes [Al (OH)n]
−(n–3)

 

after the dissolution of Al (OH)3 in water. 

 

 
Figure 1. The effect of different pH on decolorization efficiency  
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3.2 Effect of contact time  

The role of time can be expressed by means of Faraday’s law that has been shown in Eq. (10). 

With regard to this law, time has a significant effect on flock generation and oxidation of complex 

spices; hence, a better condition for dye removal is provided during electro-decolorization process. 

Cn
MT CI  AW 
  (10) 

Where Aw is the amount of dissolved anode material (g); CI is the current intensity (A); T is the 

run time (s); M is the specific molecular weight (g/mol); n is the number of electrons involved; and C 

is Faraday’s constant (As/mol) [28]. To study the effect of contact time, an operating period of about 

80 min was considered. Decolonization of Reactive Red 198 vs. removal efficiency at two conditions 

of aeration and non-aeration during operating process is illustrated in Fig. 2. According to the obtained 

results, maximum removal efficiency is observed from minute 20, and decolorization for both 

conditions rapidly occurred at a short time. Removal percentage of Reactive Red was not significant 

up to min 15. Similarly, some researchers reported that decolorizations of reactive dyes occurred at 

less than 20 min from the beginning [19, 29]. Somayajula et al. (2012) optimized the time of 

decolorization for Reactive Red 159 and reported the minimum time to be about 50 min, necessary for 

100% decolorization [30]. In order to improve dye oxidation and solution mixing, simultaneous 

aeration and electrocoagulation were applied, but it was found that there was no significant difference 

between the two conditions; thus, it can be inferred that aeration is not necessary for decolorization 

during electrocoagulation. Furthermore, gases such as oxygen, hydrogen, and hydroxyl developed 

around electrodes, which can cause both agitation and oxidation. 

 

 
 

Figure 2. The effect of contact time on decolonization of Reactive Red 198 by electrocoagulation 

[conditions: Reactor volume 250 cc , Current density 11.5 mA/cm
2
, pH 4, Distance 1 cm, 100 

mg/L Conc. of RR 198, NaCl 1g/L]. 

 

3.3. Effect of initial concentrations of RR 198 

In colored wastewaters, such as that of textile industry, the common concentration ranges 

between 50 and 250 mg/L [31]. However, to evaluate electrocoagulation method regarding RR 198 
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removal from colored wastewater, initial concentrations of 25, 50,100, 200 and 400 mg/L were used. 

As seen in Fig 3, the effect of different concentrations of RR 198 at the end of the operating time of 20 

min is demonstrated. With regard to the decolorization efficiency, large portion of dye was removed 

under all concentrations. But maximum and minimum removal percentage was determined to be about 

92.75% and 67.54% under 100 mg/L concentration at the optimum time, respectively. In similar cases, 

Song et al. (2010) observed that higher decolorization occurred under lower concentrations and this 

may be due to the faster reaction of electrochemical rather than diffusion itself. During anodic 

dissolution, a constant value of removal agents such as oxidative, perceptive, and adsorbent value were 

also provided. Therefore, with increasing of the initial concentration of dye (or pollutant), lower 

amounts of removal and also decolorization were observed. 

 

 
Figure 3. The effect of initial concentrations on decolonization of Reactive Red 198 by 

electrocoagulation [conditions: Reactor volume 250 cc, current density 11.5 mA/cm
2
, pH =4, 

distance between gap= 1 cm, contact time= 20 min, NaCl= 1g/L]. 

 

3.4. Effect of current density and distances 

During the EC process, the electrical current is one of the most important parameters affecting 

removal efficiency [32], and it has a considerable effect on electrocoagulation via the coagulant dosage 

rate [33]. To investigate the effect of current density, experiments were conducted under certain 

conditions with current density 1.9-23.1 mA/cm
2
. The results of these experiments are presented in 

Fig. 4a. According to the plot, in Fig.4a with increasing of the electrical crossing flow between 

electrodes, decolorization rate increased through higher oxidation agents and more available 

coagulants. Based on Faraday’s law, direct increasing of current intensity precipitated more amounts of 

dissolved coagulants into the solution from the anode. Furthermore, higher current density generated 

high levels of oxidative bubble with decreased size [27], which provided more surface area between 

oxidant units and pollutants. 

In order to achieve the influence of distance between electrodes gap, different distances (1-4 

cm) were evaluated. Fig. 4b indicates the effect of linear distance between anode and cathode. 

Although, there is no significant difference with the increasing of distance, higher dye removal in 



Int. J. Electrochem. Sci., Vol. 12, 2017 

  

4751 

lower distances was seen. Maximum decolorization efficiency of about 92% was found at the distance 

of 1 cm, and minimum decolorization was obtained of about 91% for both 3 and 4 cm. It is obvious 

that with the enlargement of space between electrodes, the electrical current decreased due to  

increasing the internal solution resistance; and also, less ions interaction with hydroxyl polymers was 

expected [34]. 

 

 

 
Figure 4. The effect of current density(a) and distances between electrodes (b) during decolorization 

of Reactive Red 198 by electrocoagulation [conditions: Reactor volume 250 cc , pH= 4, RR 

198 concentration=100 mg/L, C NaCl 1g/L, contact time= 20 min]. 

 

3.5. Effect of supporting electrolytes   

As seen in Fig. 5, the influence of added salts for higher decolorization and needed voltage was 

investigated. Selective salts included potassium chloride, sodium chloride, potassium nitrate, 

andsodium carbonate. Voltage variation was performed by keeping current density about 11.5 

mA/cm
2
. Among the salts, sodium and potassium chloride were more desirable with respect to both 

responses decolorization efficiency and voltage. Generally, in presence of sodium chloride, solution 

conductivity and its current density were enhanced and the necessary voltage for reaching a certain 

current density decreased; which can led to a reduction in electrical energy consumed [35]. In other 

words, chlorinated salts like potassium  and sodium are hydrolyzed and led to produce highly oxidative 
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agents such as hypochlorite, chlorine, hypochlorite ions, and hypochlorous acid(Eq. 11-13) from 

chloride ions at the anode surface [8, 36]. 

e22Cl2Cl 2

- 
                                                                         

(11)
 

HClHClOOHCl 22 
                                                                            (12)

 

-

2

--

32 6e  O
2

3
  12H 4Cl  2ClO  O3H  6HClO  

    
(13) 

 
Figure 5. The effect of supporting electrolytes during decolorization of Reactive Red 198 by 

electrocoagulation [conditions: Reactor volume 250 cc, pH= 4, RR 198 100 mg/L, Distance 

between gap= 1 cm, Current density 11.5 mA/cm
2
, time 20 min]. 

 

3.6 Total organic carbon 

 
Figure 6. Removal percent of RR 198 by TOC analysis 

 

During the electro-decolorization, TOC was measured. Fig.6 shows the variation of TOC 

analysis for 100 mg/L RR 198. Initial TOC was approximately assessed to be 23.1 mg/L, but it was 

determined to be about 4.4 mg/L, at the end of the process. With regard to the plot, the degree of 
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decolorization of RR 198 was observed. After 2 minutes of reaction, TOC suddenly reduced to around 

55%. Maximum removal was estimated to be about 80.95% at the end of 120 min. Based on TOC 

results, electrocoagulation process removes the organic contents and dye effectively. Reduction of 

TOC can occur due to the destruction of azo (–N≡N–) bond on RR 198 structure by the oxidizing 

agents [25, 37]. 

 

3.8. XRF and SEM analysis 

To determine sludge constituents, we used XRF analysis. The results of XRF analysis are 

presented in table 2. In this table L.O.I indicate the loss on ignition and shows the volatile portion of 

producedsludge after the ignition of the sample, and it  is also a commonly used method for 

determining the organic and carbonate content of sediments [38]. As can be seen in table 2, the L.O.I is 

equal to 36.73%. This portion of sludge can be representative of(RR 198) that is adsorbed on formed 

flocs and precipitated in sludge and also can be related to the degradation of its byproducts. A large 

portion of sludge (58.285%) includes aluminum oxide (Al2O3). Furthermore, iron oxide and zinc were 

detected. The presence of sulfophenyl groups can be confirmed by the decomposition of RR 198 

during electrocoagulation process. High levels of chlorine can also be derived by adding chlorinated 

salts. 

 

Table 2. Electrocoagulation sludge analysis using XRF  

 

Constituents L.O.I. Na2O MgO Al2O3 SiO2 SO3 Cl Fe2O3 Zn 

(%) 36.73 0.67 0.13 58.28 0.44 2.07 1.47 0.19 0.01 

 

Fig. 7 illustrates the Scanning Electron Microscope (SEM) of the portion of sludge produced in 

decolorization process. These figures range between 1 µm and 1 mm magnification, and also provide 

pore diameter between 50 nm and 500 nm. Due to these pore sizes, it is expected that a suitable space 

for the adsorption of dyes and their degradation products provided. With regard to the SEM image and 

sediment morphology, high levels of porosity and larger surfaces formed by nanopore and micropore 

spaces of amorphous structure were detected. 

 

 



Int. J. Electrochem. Sci., Vol. 12, 2017 

  

4754 

 
 

Figure 7. SEM images of the generated sludge during electrocoagulation process, 1mm (a) 100 µm (b) 

10 µm (c) 1 µm (d). 

 

 

 

4. CONCLUSIONS 

Decolorization of Reactive Red (RR) 198 using electrocoagulation method by aluminum 

electrodes was investigated in batch mode. Main parameters such as pH, contact time, initial 

concentration, current density, electrode gaps, and effect of supporting electrolytes were evaluated. 

Optimum conditions for these parameters are: 20 min, 1 cm of distance, NaCl electrolyte, pH= 4, and 

initial concentration of 100 mg/L. Under these conditions the decolorization efficiency was more than 

90% both with aeration and without aeration. During 120 min, TOC removal was around 80.95%.  

XRF analysis also showed that aluminum oxide formed 58.28% of the deposited sludge. 
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